AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

Foundation Tier Paper 2

Friday 16 June 2023
Morning
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- a protractor
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
TOTAL	

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

| 0 | 1 | 1 |
| :--- | :--- | :--- | What is the extension of the spring in Figure 1?

Tick (\checkmark) one box.
$1.5 \mathrm{~cm} \quad \square$
3.5 cm

13.5 cm \square

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ Give one safety precaution the student should have taken during this investigation.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ The student hung a mass of 0.050 kg from the spring. |
| :--- | :--- | :--- | :--- |

gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Calculate the weight of the 0.050 kg mass.
Use the equation:

$$
\text { weight }=\text { mass } \times \text { gravitational field strength }
$$

\qquad
\qquad
Weight = \qquad N

0	$\mathbf{1}$.	$\mathbf{4}$ The weight of the mass applies a force to the spring.

The student added more masses and recorded the extension of the spring.

Which graph in Figure 2 shows the relationship between the force applied to the spring and the extension of the spring?

Tick (\checkmark) one box.
Figure 2

Force

Force
\square

Force

0	1	5

The extension of the spring was 0.080 m .

Calculate the spring constant of the spring.
Use the equation:

$$
\text { spring constant }=\frac{\text { force }}{\text { extension }}
$$

Do not write outside the
\qquad
\qquad
\qquad
Spring constant $=$ \qquad N / m

0	$\mathbf{2}$	The stopping distance of a car is the braking distance added to the thinking distance.

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Complete the sentences.

Choose answers from the box.

chemical	electrostatic	kinetic
nuclear		thermal

A driver applies the brakes to a moving car.
As the car slows down, there is a decrease in the \qquad energy of the car.

The work done by friction causes an increase in the \qquad energy store of the brakes.

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ Figure $\mathbf{3}$ shows how the speed of the car affects the minimum braking distance of |
| :--- | :--- | :--- | the car.

Figure 3

Describe the relationship between the speed of the car and the minimum braking distance of the car.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{3}$ Complete the sentence. |
| :--- | :--- | :--- | :--- |

Choose the answer from the box.

decreases	stays the same	increases

When the road becomes icy, the braking distance \qquad .

A car driver applies the brakes to decelerate the car as it approaches a road junction.
The car decelerates at $0.25 \mathrm{~m} / \mathrm{s}^{2}$.
mass of the car $=1600 \mathrm{~kg}$

| 0 | 2 | 4 | $C a l c u l a t e ~ t h e ~ t i m e ~ t a k e n ~ f o r ~ t h e ~ v e l o c i t y ~ o f ~ t h e ~ c a r ~ t o ~ d e c r e a s e ~ f r o m ~$ |
| :--- | :--- | :--- | :--- | $12.5 \mathrm{~m} / \mathrm{s}$ to $5.0 \mathrm{~m} / \mathrm{s}$.

Use the equation:

$$
\text { time taken }=\frac{\text { change in velocity }}{\text { deceleration }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
Time taken $=$

0	2	5

Use the equation:

$$
\text { resultant force }=\text { mass } \times \text { deceleration }
$$

\qquad
\qquad
\qquad
\qquad
Resultant force $=$

Thinking distance is affected by the reaction time of the driver.

Figure 4 shows how a student tested a person's reaction time.
Figure 4

The student held a ruler and then released it.
The person being tested closed his hand to catch the ruler as quickly as possible.
The further the ruler fell the greater the person's reaction time.

$\mathbf{0}$	$\mathbf{2}$	6
6		

Which of the following could have been a control variable in this investigation?
Tick (\checkmark) one box.

Distance fallen by the ruler before being caught

Initial height of the ruler above the person's hand

Reaction time of the person being tested

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{7}$ |
| :--- | :--- | :--- | The student tested three people in her class.

The mean distance that the ruler fell before being caught was 18.2 cm .

If all of the people in her class were tested, the mean distance may not be 18.2 cm .
Suggest why.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .8$ Describe how this investigation could be changed to find out how listening to music |
| :--- | :--- | :--- | affects reaction time.

\qquad
\qquad
\qquad

Turn over for the next question

0	3

Figure 5 shows the magnetic field pattern produced when there is a current in a wire.
Figure 5

0	3	1	What do the arrows on the magnetic field lines represent?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ How could the strength of the magnetic field be increased?

Tick (\checkmark) one box.

Change the direction of the current in the wire

Increase the current in the wire

Increase the temperature of the wire

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{3}$ The wire is coiled to make a solenoid.

Which diagram in Figure 6 shows the magnetic field pattern produced when there is a current in the solenoid?

Figure 6

Question 3 continues on the next page

Figure 7 shows the parts of an electric bell.
Figure 7

| 0 | $\mathbf{3} .4$ | Figure 8 shows an incomplete sequence of how the bell works. |
| :--- | :--- | :--- | :--- |

Figure 8

Write one letter in each box to show the correct sequence.
Use each letter once.

A A magnetic field is created around the electromagnet.
B A resultant force acts on the iron arm causing it to move towards the electromagnet.

C The iron arm returns to its original position.
D There is a current in the circuit.

0	3	$\mathbf{5}$ Which of the following would increase the resultant force on the iron arm?

Do not write outside the

Tick (\checkmark) one box.

Decrease the distance between the electromagnet and the iron arm \square
Decrease the number of cells in the circuit

Decrease the number of turns on the electromagnet \square

| 0 | 3 | 6 |
| :--- | :--- | :--- | The iron arm of the bell vibrates with a frequency of 6.25 Hz .

Calculate the period of the iron arm.
Use the equation:

$$
\text { period }=\frac{1}{\text { frequency }}
$$

\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{7}$ |
| :--- | :--- | :--- | The sound waves produced by the bell are longitudinal waves.

Figure 9 shows the position of the air particles at one point in time as the sound waves travel through the air.

Figure 9

Which letter represents an area of compression?
Tick (\checkmark) one box.
A

B

C

Turn over for the next question

0	4

Figure 10
Old scientific model

| 0 | 4 | 1 | Which statement is a reason for replacing an old scientific model with a newer |
| :--- | :--- | :--- | :--- | scientific model?

Tick (\checkmark) one box.

The old model cannot explain new observations.

The old model has been used by scientists for a long time.
\square
\square
The old model is too simple.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ Compare the model of the solar system used now with the old model of the |
| :--- | :--- | :--- | :--- | solar system shown in Figure 10.

\qquad

Question 4 continues on the next page

Table 1 shows data about four planets.
Table 1

Planet	Mean distance from the Sun in millions of kilometres	Time taken for one orbit in Earth years
Mercury	58	0.25
Venus	108	0.60
Earth	150	1.00
Mars	228	1.90

| 0 | 4 |
| :--- | :--- | $\mathbf{3}$ How does the time taken for one orbit change as the mean distance from the Sun increases?

\qquad
\qquad

| 0 | 4 | 4 |
| :--- | :--- | :--- | The bar chart in Figure 11 shows some of the data from Table 1.

Figure 11

Time taken for one orbit in Earth years

Complete the bar chart.
Use data from Table 1.

Question 4 continues on the next page

| 0 | 4 |
| :--- | :--- | .5 All stars have a life cycle.

A, B and C in Figure 12 represent three stages in the life cycle of the Sun.
The stages are in the correct order.
Draw one line from each stage to the name of the stage.

Figure 12

$\begin{array}{lll}0 & \mathbf{4} & 6 \\ 6 & \text { Stars act like black bodies. }\end{array}$
Which statement is true for perfect black bodies?
Tick (\checkmark) one box.

They are good reflectors of radiation.

They are the best emitters of radiation.

They easily transmit radiation.

0	5	Electromagnetic waves are transverse.

Figure 13 represents a transverse wave.
Figure 13

| 0 | 5 | 1 |
| :--- | :--- | :--- | Which of the following gives the wavelength of the transverse wave?

Tick (\checkmark) one box.
wavelength $=\frac{\mathrm{Q}}{2}$

wavelength $=\mathrm{Q}$ \square
wavelength $=2 \mathrm{Q}$

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{2}$ Which of the following gives the amplitude of the transverse wave?

Tick (\checkmark) one box.
amplitude $=\frac{R}{2}$ \square
amplitude $=\mathrm{R}$

amplitude $=2 \mathrm{R}$

| $\mathbf{0}$ | $\mathbf{5} .3$ | $\mathbf{3}$ Microwaves are electromagnetic waves used for mobile phone communications. |
| :--- | :--- | :--- | :--- |

Which other type of electromagnetic wave is also used for communications?
Tick (\checkmark) one box.

Radio waves

Ultraviolet

X-rays

| $\mathbf{0}$ | $\mathbf{5} .4$ | 4 |
| :--- | :--- | :--- | speed of microwaves $=300000000 \mathrm{~m} / \mathrm{s}$

Calculate the distance between the mobile phone and the mobile phone mast.
Use the equation:

$$
\text { distance }=\text { speed } \times \text { time }
$$

\qquad
\qquad
\qquad
Distance $=$ \qquad m

| 0 | 5 | 5 |
| :--- | :--- | :--- | Mobile phone communications is only one of the uses for microwaves.

Give one other use of microwaves.
\qquad
\qquad

$$
=
$$

Distance
5.5 Mobile phone communications is only one of the uses for microwaves.

0	6	A student investigated the refraction of light through a glass block.

Figure 14 shows the ray box used.
The student aimed the beam of light from the ray box towards a glass block.
The student measured the angle of incidence at the point where the light entered the glass block.

Figure 14

| 0 | 6 | 1 |
| :--- | :--- | :--- | Why is using a wide beam of light less likely to give accurate results than using a narrow beam?

Tick (\checkmark) one box.

It will be harder to judge where the centre of the beam is.

It will cause a smaller uncertainty in the measurements.

The angle of refraction will be larger than it should be. \square

0	6	2

Figure 15

Complete Figure 15 to show the path taken by the beam of light through the glass block and back into the air.

Figure 16 shows the protractor used by the student.
Figure 16

| $\mathbf{0}$ | $\mathbf{6} .3$ What is the resolution of the protractor? |
| :--- | :--- | :--- |

Tick (\checkmark) one box.

1 degree

10 degrees

180 degrees

0	6	4	For one angle of incidence the student measured the angle of refraction three times.

The three measurements were:
35°
31°
33°

Calculate the mean angle of refraction.
\qquad
\qquad
Mean angle of refraction = \qquad。

The student placed a red filter in front of the white beam of light.
Only red light passes through the filter.

0	6	5

When white light is incident on the red filter, all colours except for red are
\qquad by the filter.

Use the Physics Equations Sheet to answer questions 06.6 and 06.7.
 [1 mark]

0	6	.7

The frequency of the red light is $4.0 \times 10^{14} \mathrm{~Hz}$.

Calculate the wavelength of the red light in air.
\qquad
\qquad
\qquad
\qquad
\qquad
Wavelength = \qquad m

0	7	Figure 17 shows the Hubble Space Telescope orbiting the Earth.

Figure 17

$\mathbf{0}$	$\mathbf{7} .1$	$\mathbf{1}$ What name is given to an object that orbits a planet?

Tick (\checkmark) one box.

A comet

A satellite

A star

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ The Earth exerts a gravitational force on the Hubble Space Telescope.

Draw an arrow on Figure 17 to show the gravitational force.

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Figure 18 shows how the distance travelled by the Hubble Space Telescope during |
| :--- | :--- | :--- | :--- | its orbit changes with time.

Figure 18

The gradient of the line in Figure 18 gives the speed of the Hubble Space Telescope.
Determine the speed of the Hubble Space Telescope.
Give your answer in km/s.
\qquad
\qquad
\qquad
\qquad
\qquad
Speed $=$ \qquad km/s

The Hubble Space Telescope can detect the visible light spectra from distant galaxies.

The visible light spectra from stars and galaxies include dark lines at specific wavelengths.

Figure 19 shows the visible light spectra from the Sun and three galaxies.
Figure 19

| 0 | 7 | 4 |
| :--- | :--- | :--- | Which galaxy is moving away from the Earth the fastest?

Tick (\checkmark) one box.

Galaxy A \square
Galaxy B \square
Galaxy C \square

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{5}$

Do not write outside the

Tick (\checkmark) one box.

Galaxy A \square
Galaxy B

Galaxy C

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{6}$ New scientific observations indicate that many galaxies rotate too quickly for the |
| :--- | :--- | :--- | :--- | known mass of the stars they contain.

Why is it important that new scientific observations are peer reviewed?
Tick (\checkmark) one box.

To check the observations are correct

To identify control variables

To provide more proof \square

Turn over for the next question

$\mathbf{0}$	$\mathbf{8}$	Lenses can be used to form an image of an object.

$\mathbf{0}$	$\mathbf{8} .1$	Figure 20 shows parallel rays of light being refracted by a convex lens.

Figure 20

What is the position marked ' F ' called?
Tick (\checkmark) one box.

Focal length

Focus point

Principal focus

| 0 | $\mathbf{8} .2$ | Complete the ray diagram in Figure 21 to show how a concave lens forms the image |
| :--- | :--- | :--- | :--- | of the object.

Use an arrow to represent the image.

Figure 21

| 0 | 8 | 3 |
| :--- | :--- | :--- | an object.

Figure 22

Give two ways that the image formed by the convex lens in Figure $\mathbf{2 2}$ is similar to the image formed by the concave lens.

1
2 \qquad

| 0 | $\mathbf{8} .4$ |
| :--- | :--- | A convex lens is used as a magnifying glass to identify a symbol on the back of a silver spoon.

The symbol has an actual height of 1.6 mm .
The magnification produced by the lens is 3.5

Calculate the image height of the symbol when viewed through the magnifying glass.
Use the Physics Equations Sheet.
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
Image height $=$ \qquad mm

| $\mathbf{0}$ | $\mathbf{9} \quad$ Infrared waves are transverse waves. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{1}$

In a transverse wave, the direction of oscillation is \qquad to the direction of energy transfer by the wave.

A student investigated how the colour of a surface affects the rate at which the surface emits infrared radiation.

Figure 23 shows some of the equipment used.
Figure 23

Silver-coloured flask

Black-coloured flask

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{2}$ The student wrote the following hypothesis:

'The black-coloured flask will emit more infrared radiation than the silver-coloured flask during 10 minutes of cooling.'

Describe a method to test this hypothesis.
\qquad

Question 9 continues on the next page

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{3}$ When will the flasks emit infrared radiation at the greatest rate?

Give a reason for your answer.
Tick (\checkmark) one box.

During the 1st minute

During the 5th minute \square

During the 9th minute

Reason

Another student investigated the absorption of infrared radiation by different surface colours.

The student filled four hollow metal cubes with cold water.
Each cube was the same size but had a different surface colour.
The cubes were then placed the same distance from an infrared heater.
After 10 minutes, the student measured the temperature increase of the water inside each cube.

0	9	4

\qquad
\qquad

0	9	5	Table 2 shows the results.

Table 2

Surface colour of the cube	Temperature increase after $\mathbf{1 0}$ minutes in ${ }^{\circ} \mathbf{C}$
Matt white	3.0
Shiny white	2.0
Matt black	6.5
Shiny black	4.0

Give two conclusions that can be made from the results in Table 2.

1 \qquad
\qquad
2 \qquad
\qquad

Figure $\mathbf{2 4}$ shows one of the cubes. The cube is filled with water.
The weight of the water exerts a pressure on the bottom of the cube.
Figure 24

Use the Physics Equations Sheet to answer questions 09.6 and 09.7.

0	$\mathbf{9}$	6	Which equation correctly links area, force and pressure?

Tick (\checkmark) one box.
pressure $=$ force \times area 2

pressure $=$ force \times area

pressure $=\frac{\text { force }}{\text { area }}$

pressure $=\frac{\text { area }}{\text { force }}$ \square

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{7}$	The water pressure at the bottom of the cube is 1500 Pa.

Calculate the force of the water on the bottom of the cube.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad N

Do not write outside the box

Turn over for the next question

Figure 25 shows the route an aeroplane takes as it travels from an airport terminal to the runway.

Figure 25 has been drawn to scale.
Figure 25

Scale: 1 cm represents 70 m

1	0	1
Determine the magnitude of the aeroplane's displacement from the start point to the		

\qquad
\qquad
\qquad
Displacement = \qquad m

Figure 26 shows the direction of the horizontal forces acting on the aeroplane as it moves in a straight line towards the runway.

Figure 26

1	$\mathbf{0} .2$	Determine the magnitude of the resultant horizontal force on the aeroplane.

\qquad
\qquad
Resultant horizontal force $=$ N

$\mathbf{1}$	$\mathbf{0}$.	$\mathbf{3}$ Describe the motion of the aeroplane as it moves towards the runway.

\qquad
\qquad

1	0	4	Air resistance and friction are contact forces.

Give one other example of a contact force.
\qquad

$\mathbf{1}$	$\mathbf{0}$	$\mathbf{5}$ The aeroplane stops for a short time and then accelerates along the runway.

Figure 27 shows a distance-time sketch-graph for this stage of the journey.
Figure 27

Draw the velocity-time sketch-graph for this stage of the journey on Figure 28.

Figure 28

Figure 29 shows how atmospheric pressure varies with the height of the aeroplane above the ground.

Figure 29

Estimate the atmospheric pressure when the height of the aeroplane above the ground is 10 km .

Atmospheric pressure $=$ \qquad kPa

Question 10 continues on the next page

| $\mathbf{1}$ | $\mathbf{0}$. | $\mathbf{7}$ What happens to the air surrounding the aeroplane as the height of the aeroplane |
| :--- | :--- | :--- | above the ground increases?

Tick (\checkmark) one box.

The average density of the air above the aeroplane decreases. \square
The mass of air above the aeroplane increases.

The temperature of the air increases.

The volume of air below the aeroplane decreases.

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\square
	...
	\square
	\square
	\square
	\square

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 AQA and its licensors. All rights reserved.

