| Surname | |-------------------------------| | Forename(s) | | Centre Number | | Candidate Number | | Candidate Signature | | I declare this is my own work | # GCSE COMPUTER SCIENCE Paper 2 Computing concepts 8525/2 Thursday 25 May 2023 Afternoon Time allowed: 1 hour 45 minutes At the top of the page, write your surname and forename(s), your centre number, your candidate number and add your signature. #### **MATERIALS** There are no additional materials required for this paper. You must NOT use a calculator. #### **INSTRUCTIONS** - Use black ink or black ball-point pen. Use pencil only for drawing. - Answer ALL questions. - You must answer the questions in the spaces provided. - If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). - Do all rough work in this book. Cross through any work you do not want to be marked. #### **INFORMATION** The total number of marks available for this paper is 90. #### **ADVICE** For the multiple-choice questions, completely fill in the lozenge alongside the appropriate answer. **CORRECT METHOD** WRONG METHODS If you want to change your answer you must cross out your original answer as shown. If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. DO NOT TURN OVER UNTIL TOLD TO DO SO Answer ALL questions in the spaces provided. 01.1 The number base 2 is called BINARY. Shade ONE lozenge to show which number base is called HEXADECIMAL. [1 mark] O D 16 | 01. | 2 | | |-----|---|--| | | | VO lozenges to show the statements that are the the the the the the the the the th | | 0 | A | Hexadecimal can represent a greater range of numbers than binary. | | 0 | В | Hexadecimal is easier for people to read than binary. | | 0 | С | Hexadecimal is faster for a computer to process than binary. | | 0 | D | Hexadecimal is more accurate than binary. | | 0 | E | Hexadecimal takes less space in RAM than binary. | | 0 | F | Hexadecimal takes less time to type than binary. | | | | | | 0 2 . 1 | |--| | Convert the decimal number 171 into binary. [1 mark] | | | | | | | | | | 02.2 | | Convert the hexadecimal number 2D into binary. | | You should show your working. [2 marks] | | | | | | | | | | | | | | Answer | 0 3 Add together the following three binary numbers and give your answer in binary. [2 marks] | 0 4 | | |---|----------| | Convert 16 000 000 bits to megabytes (MB). | | | You should show your working. [2 marks] | Answer | MB | | 0 5 | | | Describe the binary shift that would be used to binary number by four. [1 mark] | divide a | | | | | | | | | | | 0 | 6 | 1 | |---|---|---| | | | | When a sound wave is converted to a digital form it is sampled. The sampling rate is measured in hertz (Hz). | Define the term HERTZ. | [1 mark] | | | |------------------------|----------|---|--| | | | | | | | | _ | | | | | | | | 06.2 | | |---|--| | A sampling rate of 20 000 Hz and a sample resolution four bits is used to make a digital recording of a southat lasts 50 seconds. | | | What is the minimum file size of the recording in megabytes (MB)? | | | You should show your working. [3 marks] | Answer MB | | ## **BLANK PAGE** | | |
 | |---|---|------| | 0 | 7 | 1 | The term pixel is short for Picture Element. Define the term PIXEL. [1 mark] | 0 | 7 | | 2 | |---|---|---|---| | • | • | - | _ | FIGURE 1 shows a 5 pixel x 5 pixel image. A minimum colour depth of two bits is needed to store the image. ## FIGURE 1 | Explain how the image in FIGURE 1 can be represented as a bitmap. [3 marks] | |---| Answer | bits | |---|--------| You should show your working. [2 marks] | | | Calculate the minimum file size, in bits, of this when represented as a bitmap. | ımage | | Coloulate the minimum file size in hite of this | imaaaa | | A 10 pixel x 10 pixel image contains five different colours. | ent | | 0 7 . 3 | | | 0 7 | | 4 | |-----|--|---| |-----|--|---| A black and white image has been compressed using run length encoding (RLE). The first bit in each byte of the bit pattern represents the colour and the remaining seven bits of the byte represent the number of pixels in the run. The image has a run of 60 black pixels followed by a run of 30 white pixels and is represented by the bit pattern shown in FIGURE 2. #### FIGURE 2 | \cap | \cap | 1 1 | 1 | 1 | 1 | \cap | \cap | 1 1 | \cap | \cap | 1 | 1 1 | 1 | 1 1 | \cap | |--------|--------|------------|---|---|---|--------|--------|-----|--------|--------|---|-----|---|-----|--------| | \cup | U | I <u>L</u> | | | | U | \cup | | \cup | U | | L | | | \cup | | _ | _ | | | | | _ | _ | | _ | _ | | | | | 0 | | | | | | | | | | | | | | | | | | Using the same RLE method, give the bit pattern for a black and white image that has a run of 64 white pixels followed by a run of 15 black pixels. Write your answer in TABLE 1. [2 marks] ## TABLE 1 [Turn over] 8 | 08.1 | |---| | Define the term HARDWARE. [1 mark] | | | | | | | | 08.2 | | Describe the role of each of the following components of a CPU: [3 marks] | | Clock | | | | | | | | | | | | Control unit | | | | | | Register | |---| | | | | | | | | | | | 08.3 | | Give ONE reason why a CPU with TWO cores might perform faster than an equivalent CPU with only one core. [1 mark] | | | | | | | | 08.4 | |--| | Define the term NON-VOLATILE MEMORY. [1 mark] | | | | | | | | | | 08.5 | | Give ONE example of a type of VOLATILE memory in a computer system. [1 mark] | | | | | | | | 08.6 | | | | | | | |---|--|--|--|--|--|--| | Explain why secondary storage is required in a computer system. [2 marks] | 09.1 | |--| | Define the term SOFTWARE. [1 mark] | | | | | | | | | | | | 09.2 | | Define the term SYSTEM SOFTWARE. [1 mark] | | | | | | | | | | | | 09.3 | | Define the term APPLICATION SOFTWARE. [1 mark] | | | | | | | | | | 1 | 0 | | 1 | |---|---|---|---| | |) | • | • | | Explain the role of main memory in the EXECUTE stage of the Fetch-Execute cycle. [2 marks] | | | | | | | |--|--|--|--|--|--|--| 10.2 | |---| | Describe the other TWO stages of the Fetch-Execute cycle. [2 marks] | | Fetch stage | | | | | | | | Decode stage | | | | | | | | | ## **BLANK PAGE** 11.1 Complete the truth table for the XOR logic gate. [1 mark] | Α | В | A XOR B | |---|---|---------| | 0 | 0 | | | 0 | 1 | | | 1 | 0 | | | 1 | 1 | | FIGURE 3 shows a logic circuit. ## FIGURE 3 | 11.2
State the type of logic gate labelled G ₁ in FIGURE 3.
[1 mark] | |---| | | | 11.3 | | Write a Boolean expression to show how the output D is calculated from the inputs A, B and C in FIGURE 3. | | You MUST use the correct symbols for the Boolean operators in your expression. [2 marks] | | | | D = | | [Turn over] 4 | 12.1 FIGURE 4 shows three programs (A, B, C) that add two numbers and output the result. The programs are written in different programming languages. ## FIGURE 4 | Α | В | С | | | |-------------------|------------|---|--|--| | y = 3 $z = x + y$ | LDR R1, #3 | 0000 00001110
0001 00000011
0110 00010000
1010 10111111
1110 00000000 | | | Identify the type of programming language used for each program shown in FIGURE 4 by writing A, B or C in the correct row of TABLE 2. You MUST only use each letter once. [2 marks] TABLE 2 | | A, B or C | |---------------------|-----------| | Assembly language | | | High-level language | | | Machine code | | | 12.2 | | |---------|--| | | NE advantage of writing programs in assembly ge instead of a high-level language. [1 mark] | | | | | | | | | | | 12.3 |] | | | ONE lozenge to show which statement is true rogram translators. [1 mark] | | 0 | A A compiler translates all the original program code before execution. | | 0 | B Compiled code still needs the original program code to execute. | | 0 | C Compiled code executes more slowly than code that is being interpreted. | | 0 | D Interpreters generate machine code directly. | | [Turn o | ver] | | 13.1 | |---| | Describe TWO differences between a PAN and a WAN. [2 marks] | | Difference 1 | | | | | | Difference 2 | | | | | | Shade TWO lozenges to show which statements are true about LANs. [2 marks] A LANs always use the Ethernet protocol. B LANs always use wireless technology. C LANs are usually controlled or owned by a single organisation. D LANs connect a maximum of 150 devices. E LANs cover one room, building or site. | 13. | 2 | |--|-----|--| | B LANs always use wireless technology. C LANs are usually controlled or owned by a single organisation. D LANs connect a maximum of 150 devices. | | _ | | C LANs are usually controlled or owned by a single organisation. D LANs connect a maximum of 150 devices. | 0 | A LANs always use the Ethernet protocol. | | single organisation. D LANs connect a maximum of 150 devices. | 0 | B LANs always use wireless technology. | | | 0 | - | | E LANs cover one room, building or site. | 0 | D LANs connect a maximum of 150 devices. | | | 0 | E LANs cover one room, building or site. | | 13.3 | |---| | State TWO differences between a bus topology and a star topology. [2 marks] | | Difference 1 | | | | Difference 2 | | | | 13.4 | | HTTP is an example of a network protocol. | | Define the term NETWORK PROTOCOL. [2 marks] | | | | | | | | 13.5 | | |--|------------| | The application layer and the transport layer at the layers within the TCP/IP model. | are two of | | What are the names of the other TWO layers of TCP/IP model? [2 marks] | of the | | 1 | | | | | | | | | 2 | | | | | | | | | | | | [Turn over] | 10 | 1 4 A teacher keeps a record of books loaned to students. The teacher uses a relational database containing three tables, BOOKCOPY, STUDENT and LOAN. FIGURE 5, below and on the opposite page, shows some data from the tables. ### FIGURE 5 #### **BOOKCOPY** | CopyID | BookTitle | |--------|---------------------| | HT001 | HTML 4 Fun | | PB002 | Python Basics | | GC001 | GCSE Computing | | GC002 | GCSE Computing | | GC003 | GCSE Computing | | GC004 | GCSE Computing | | RG001 | GCSE Revision Guide | ## **STUDENT** | StudentID | FirstName | LastName | YearGroup | |-----------|-----------|----------|-----------| | TUC004 | Barry | Tucker | 8 | | WAY002 | Shania | Wayneton | 10 | | KOW001 | Bartek | Kowalski | 11 | | AZE001 | Faisal | Azeez | 9 | | BAK007 | Jolene | Baker | 11 | | ANA002 | Aisha | Anand | 11 | | OKA003 | Sani | Okafor | 10 | ## **LOAN** | LoanID | StudentID | CopyID | DepositPaid | |--------|-----------|--------|-------------| | L0001 | TUC004 | HT001 | 0.50 | | L0002 | WAY002 | GC004 | 2.00 | | L0003 | KOW001 | GC001 | 2.00 | | L0004 | TUC004 | PB002 | 0.75 | | L0005 | BAK007 | RG001 | 2.50 | | L0006 | BAK007 | GC002 | 2.00 | | L0007 | OKA003 | GC003 | 2.00 | ## **BLANK PAGE** | 14. | 1 | | |-----|----|---| | | en | VO lozenges to show which of the following ts are benefits of relational databases. | | 0 | A | All the information can be stored in one table. | | 0 | В | Redundant data is less likely to be stored. | | 0 | С | Tables don't need primary keys. | | 0 | D | There are less likely to be data inconsistencies. | | | | E field in the LOAN table that is a foreign key. | | | | | | | 1 | 4 | | 3 | |--|---|---|--|---| |--|---|---|--|---| | State the most suitable data field in the LOAN table. [1 m | - | |--|---| | | | ## **BLANK PAGE** ## **REPEAT OF FIGURE 5** ## **BOOKCOPY** | CopyID | BookTitle | |--------|---------------------| | HT001 | HTML 4 Fun | | PB002 | Python Basics | | GC001 | GCSE Computing | | GC002 | GCSE Computing | | GC003 | GCSE Computing | | GC004 | GCSE Computing | | RG001 | GCSE Revision Guide | ## **STUDENT** | StudentID | FirstName | LastName | YearGroup | |-----------|-----------|----------|-----------| | TUC004 | Barry | Tucker | 8 | | WAY002 | Shania | Wayneton | 10 | | KOW001 | Bartek | Kowalski | 11 | | AZE001 | Faisal | Azeez | 9 | | BAK007 | Jolene | Baker | 11 | | ANA002 | Aisha | Anand | 11 | | OKA003 | Sani | Okafor | 10 | ## **LOAN** | LoanID | StudentID | CopyID | DepositPaid | |--------|-----------|--------|-------------| | L0001 | TUC004 | HT001 | 0.50 | | L0002 | WAY002 | GC004 | 2.00 | | L0003 | KOW001 | GC001 | 2.00 | | L0004 | TUC004 | PB002 | 0.75 | | L0005 | BAK007 | RG001 | 2.50 | | L0006 | BAK007 | GC002 | 2.00 | | L0007 | OKA003 | GC003 | 2.00 | ## **BLANK PAGE** | 1 | 4 | | 4 | |---|---|-----|---| | - | - | - 1 | • | Year 11 students must return their books after they have finished their GCSE exams. Using the database shown in FIGURE 5, on pages 38 and 39, write an SQL query that lists all the loans for students who are in Year 11. The query must ONLY return: - both names of the student - the ID of the book borrowed - the deposit paid. | last names. [6 marks] | | | | | |-----------------------|--|--|--|--| 14.5 | |--| | Barry Tucker has returned their copy of the book Python Basics. | | Complete the SQL to delete the loan record for the book PB002. [2 marks] | | DELETE FROM | | WHERE | 1 5 Wearable devices, such as smartwatches and fitness trackers, have become more popular in recent years. This has led to an increase in the amount of personal, health-related data being collected by technology companies. #### Discuss the: [9 marke] - benefits of collecting personal, health-related data using wearable devices - data privacy issues related to the collection of personal, health-related data - legal issues related to the collection of personal, health-related data. | [o marko] | | | | |-----------|--|--|--| _ | |--|--|---| | 16.1 | |---| | Define the term CYBER SECURITY. [2 marks] | | | | | | | | | | | | | | | | | | 16.2 | | State ONE type of malware. [1 mark] | | | | | | | | | | [Turn over] | # 16.3 The network manager of a new computer games company, AQAware, is configuring the network. They are concerned about potential cyber security threats that could affect the company's systems. Discuss the potential impact of the following threats on AQAware: - weak and default passwords - misconfigured access rights - unpatched and/or outdated software. In your response you should include: - how these threats could be exploited by an attacker - how AQAware could protect themselves against these threats. | [3 IIIaik5] | | | |-------------|--|--| [0 marke] | END OF QUESTIONS | 12 | |------------------|----| | Additional page, if required. | | |-------------------------------|---| | | Write the question numbers in the left-hand margin. | Additional page, if required. | | | |-------------------------------|---|--| | | Write the question numbers in the left-hand margin. | Additional page, if required. | | | |-------------------------------|---|--| | | Write the question numbers in the left-hand margin. | ### **BLANK PAGE** | For Examiner's Use | | | |--------------------|------|--| | Question | Mark | | | 1–6 | | | | 7 | | | | 8 | | | | 9–10 | | | | 11 | | | | 12 | | | | 13 | | | | 14 | | | | 15 | | | | 16 | | | | TOTAL | | | #### **Copyright information** For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. Copyright © 2023 AQA and its licensors. All rights reserved. ### WP/M/CD/Jun23/8525/2/E3