Contents

Enquiry processes

6	More on planning how to answer a question	2
7	More on analysing and evaluating	4
8	Communication	6
9	Evidence and sources	8
10	Critique claims and justify opinions	10
11	Risks and benefits	12
12	Review theories 1	14
13	Review theories 2	16

1: Forces Part 2 Opener

<table>
<thead>
<tr>
<th>1.3 Contact forces</th>
<th>1.4 Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1 Friction and drag</td>
<td>1.4.1 Pressure in gases</td>
</tr>
<tr>
<td>1.3.2 Squashing and stretching</td>
<td>1.4.2 Pressure in liquids</td>
</tr>
<tr>
<td>1.3.3 Turning forces</td>
<td>1.4.3 Stress on solids</td>
</tr>
</tbody>
</table>

Part 2 Summary and Questions

- 20
- 22
- 24
- 26
- 28
- 30
- 32

2: Electromagnets Part 2 Opener

<table>
<thead>
<tr>
<th>2.3 Magnetism</th>
<th>2.4 Electromagnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Magnets and magnetic fields</td>
<td>2.4.1 Electromagnets</td>
</tr>
<tr>
<td>2.3.2 Using electromagnets</td>
<td>2.4.2 Using electromagnets</td>
</tr>
</tbody>
</table>

Part 2 Summary and Questions

- 36
- 38
- 40
- 42

3: Energy Part 2 Opener

<table>
<thead>
<tr>
<th>3.3 Work</th>
<th>3.4 Heating and cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Work, energy, and machines</td>
<td>3.4.1 Energy and temperature</td>
</tr>
<tr>
<td>3.3.2 Radiation and energy</td>
<td>3.4.2 Energy transfer: particles</td>
</tr>
<tr>
<td>3.4.3 Energy transfer: radiation and insulation</td>
<td>3.4.3 Energy transfer: radiation and insulation</td>
</tr>
</tbody>
</table>

Part 2 Summary and Questions

- 46
- 48
- 50
- 52
- 54

4: Waves Part 2 Opener

<table>
<thead>
<tr>
<th>4.3 Wave effects</th>
<th>4.4 Wave properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Sound waves, water waves, and energy</td>
<td>4.4.1 Modelling waves</td>
</tr>
<tr>
<td>4.3.2 Radiation and energy</td>
<td>4.4.2 Using waves</td>
</tr>
</tbody>
</table>

Part 2 Summary and Questions

- 58
- 60
- 62
- 64

5: Matter Part 2 Opener

<table>
<thead>
<tr>
<th>5.3 Elements</th>
<th>5.4 Periodic Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1 Elements</td>
<td>5.4.1 The Periodic Table</td>
</tr>
<tr>
<td>5.3.2 Atoms</td>
<td>5.4.2 The elements of Group 1</td>
</tr>
<tr>
<td>5.3.3 Compounds</td>
<td>5.4.3 The elements of Group 7</td>
</tr>
<tr>
<td>5.3.4 Chemical formulae</td>
<td>5.4.4 The elements of Group 0</td>
</tr>
<tr>
<td>5.3.5 Polymers</td>
<td>Part 2 Summary and Questions</td>
</tr>
</tbody>
</table>

Part 2 Summary and Questions

- 68
- 70
- 72
- 74
- 76
- 78
- 80
- 82
- 84
- 86
6: Reactions

<table>
<thead>
<tr>
<th>6.3 Types of reaction</th>
<th>6.4 Chemical energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 Atoms in chemical reactions</td>
<td>90</td>
</tr>
<tr>
<td>6.3.2 Combustion</td>
<td>92</td>
</tr>
<tr>
<td>6.3.3 Thermal decomposition</td>
<td>94</td>
</tr>
<tr>
<td>6.3.4 Conservation of mass</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>6.4.1 Exothermic and endothermic</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Energy level diagrams</td>
</tr>
<tr>
<td></td>
<td>6.4.3 Bond energies</td>
</tr>
<tr>
<td></td>
<td>Part 2 Summary and Questions</td>
</tr>
</tbody>
</table>

7: Earth

<table>
<thead>
<tr>
<th>7.3 Climate</th>
<th>7.4 Earth resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1 Global warming</td>
<td>108</td>
</tr>
<tr>
<td>7.3.2 The carbon cycle</td>
<td>110</td>
</tr>
<tr>
<td>7.3.3 Climate change</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>7.4.1 Extracting metals</td>
</tr>
<tr>
<td></td>
<td>7.4.2 Recycling</td>
</tr>
<tr>
<td></td>
<td>Part 2 Summary and Questions</td>
</tr>
</tbody>
</table>

8: Organisms

<table>
<thead>
<tr>
<th>8.3 Breathing</th>
<th>8.4 Digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.1 Gas exchange</td>
<td>122</td>
</tr>
<tr>
<td>8.3.2 Breathing</td>
<td>124</td>
</tr>
<tr>
<td>8.3.3 Drugs</td>
<td>126</td>
</tr>
<tr>
<td>8.3.4 Alcohol</td>
<td>128</td>
</tr>
<tr>
<td>8.3.5 Smoking</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>8.4.1 Nutrients</td>
</tr>
<tr>
<td></td>
<td>8.4.2 Food tests</td>
</tr>
<tr>
<td></td>
<td>8.4.3 Unhealthy diet</td>
</tr>
<tr>
<td></td>
<td>8.4.4 Digestive system</td>
</tr>
<tr>
<td></td>
<td>8.4.5 Bacteria and enzymes in digestion</td>
</tr>
<tr>
<td></td>
<td>Part 2 Summary and Questions</td>
</tr>
</tbody>
</table>

9: Ecosystems

<table>
<thead>
<tr>
<th>9.3 Interdependence</th>
<th>9.4 Photosynthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1 Aerobic respiration</td>
<td>146</td>
</tr>
<tr>
<td>9.3.2 Anaerobic respiration</td>
<td>148</td>
</tr>
<tr>
<td>9.3.3 Biotechnology</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>9.4.1 Photosynthesis</td>
</tr>
<tr>
<td></td>
<td>9.4.2 Leaves</td>
</tr>
<tr>
<td></td>
<td>9.4.3 Investigating photosynthesis</td>
</tr>
<tr>
<td></td>
<td>9.4.4 Plant minerals</td>
</tr>
<tr>
<td></td>
<td>Part 2 Summary and Questions</td>
</tr>
</tbody>
</table>

10: Genes

<table>
<thead>
<tr>
<th>10.3 Variation</th>
<th>10.4 Human reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.1 Natural selection</td>
<td>164</td>
</tr>
<tr>
<td>10.3.2 Charles Darwin</td>
<td>166</td>
</tr>
<tr>
<td>10.3.3 Extinction</td>
<td>168</td>
</tr>
<tr>
<td>10.3.4 Preserving biodiversity</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>10.4.1 Inheritance</td>
</tr>
<tr>
<td></td>
<td>10.4.2 DNA</td>
</tr>
<tr>
<td></td>
<td>10.4.3 Genetics</td>
</tr>
<tr>
<td></td>
<td>10.4.4 Genetic modification</td>
</tr>
<tr>
<td></td>
<td>Part 2 Summary and Questions</td>
</tr>
</tbody>
</table>

Glossary: 182
Index: 188
Periodic Table: 191
We all know that sweets should only be eaten as a treat and you have probably heard many times that you should eat a balanced diet. But what does this mean, and why is it important?

Nutrients are important substances that your body needs to survive and stay healthy. There are different types of nutrients. We get most of them from food. The types of nutrient are:

1. **carbohydrates**, which provide energy
2. **lipids** (fats and oils), which provide energy
3. **proteins**, which are used for growth and repair
4. **vitamins**, which keep you healthy
5. **minerals**, which keep you healthy
6. **water**, which is needed in all cells and body fluids
7. **dietary fibre**, which provides bulk to food to keep it moving through the gut. Fibre is not a nutrient but it is important for a healthy diet.

To remain healthy you must eat a **balanced diet**. This means eating food containing the right nutrients in the correct amounts.

A State what is meant by a nutrient.

Carbohydrates

There are two types of carbohydrate:

- simple carbohydrates (sugars): these are found in foods such as sugar and fruit. They provide a quick source of energy.
- complex carbohydrates (starch): these are found in foods such as pasta and bread. They have to be broken down by the body, so the energy is released more slowly.

B State the function of carbohydrates.

Lipids

Lipids include fats and oils. They have three important jobs. They:

- provide you with a store of energy
- keep you warm, by providing a layer of insulation under your skin
- protect organs like your kidneys and heart from damage.
Proteins
Proteins are needed to repair body tissues and to make new cells for growth. Your muscles, organs, and immune system are mostly made of proteins.

C State two functions of proteins.

Vitamins and minerals
Vitamins and minerals are essential substances for keeping you healthy but you only need tiny amounts. Vitamins are needed for you to grow, develop, and function normally. For example, vitamin A is needed for good eyesight. Vitamin D is needed with the mineral calcium to maintain healthy teeth and bones. Iron is a mineral which is important for making red blood cells.

Fruits and vegetables are a good source of vitamins and minerals.

D State why the body needs calcium and iron.

Water
Your cells are made up of about 70% water. To keep them healthy you need to constantly replace the water your body loses in sweat, tears, urine, faeces, and exhaling. You should drink over a litre of water every day. This can come from drinking water but tea, fruit juice, and squash all count.

Dietary fibre
Fibre is the parts of plants that the body cannot break down. It is an important part of your diet as it adds bulk to your food. This means it keeps food moving through the gut, and waste is pushed out of the body more easily, helping to prevent constipation.

Summary Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Match the nutrient to its role in the body. (6 marks)</td>
</tr>
<tr>
<td>2</td>
<td>Describe the role of lipids in the body. (3 marks)</td>
</tr>
<tr>
<td>3</td>
<td>Suggest and explain the advice a doctor might give to a patient who has constipation. (3 marks)</td>
</tr>
<tr>
<td>4</td>
<td>Explain in detail what is meant by a balanced diet. Provide examples of what a balanced diet should contain. (6 marks)</td>
</tr>
</tbody>
</table>

Healthy eating
Design and film a healthy-eating TV advert on behalf of the government. The advert should aim to encourage young people to eat a balanced diet.
You may be able to guess by looking at some foods which nutrients they contain. For example, you may know that oily foods contain lipids. Scientists use food tests to find out which nutrients are in a food product.

How can you test foods?
A different chemical test exists for each type of nutrient. For most food tests, you will need a solution of the food. To prepare a food solution:

1. crush the food using a pestle and mortar
2. add a few drops of water, and mix well.

You should use a special type of water called distilled water – this is pure water that contains no other chemical substances.

How do you test for starch?
To test for starch you use iodine solution. Iodine solution is an orange-yellow liquid.

1. Add a few drops of iodine solution to the food solution.
2. If the solution turns a dark blue-black colour, the food contains starch.

A State the colour change in iodine if a food contains starch.

How do you test for lipids?
To test for lipids in a solid piece of food you use a piece of filter paper.

1. Rub some of the food onto a piece of filter paper.
2. Hold the paper up to the light. If the paper has gone translucent, the food contains lipids.

B State how you would test a solid piece of food for lipids.

To test for lipids in a food solution you use ethanol. Ethanol is a colourless liquid.
1. Add a few drops of ethanol to the food solution.
2. Shake the test tube and leave for one minute.
3. Pour the ethanol into a test tube of water.
4. If the solution turns cloudy, the food contains lipids.

How do you test for sugar?
To test for simple sugars such as glucose you use Benedict’s solution. Benedict’s solution is a blue liquid.
1. Add a few drops of Benedict’s solution to the food solution.
2. Heat the test tube in a water bath.
3. If the solution turns orange-red, the food contains sugar.

How do you test for protein?
To test for protein you use copper sulfate solution and sodium hydroxide solution. Copper sulfate solution is a pale-blue liquid. Sodium hydroxide solution is a colourless liquid.
1. Add a few drops of copper sulfate solution to your food solution.
2. Add a few drops of sodium hydroxide solution.
3. If the solution turns purple, the food contains protein.

Summary Questions

1. Complete the table using the words below.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Colour change if nutrient present</th>
</tr>
</thead>
<tbody>
<tr>
<td>starch</td>
<td>turns blue-black</td>
</tr>
<tr>
<td>lipids</td>
<td>turns orange-red</td>
</tr>
<tr>
<td>sugar</td>
<td>makes paper translucent</td>
</tr>
<tr>
<td>protein</td>
<td>turns purple</td>
</tr>
</tbody>
</table>

(4 marks)

2. Describe how to prepare a food solution of a breakfast cereal.
(3 marks)

3. Explain in detail how you would test a gingerbread-biscuit solution for the presence of starch, sugar, and protein.
(6 marks)
You may have seen pictures of people who are either extremely overweight or underweight. Both of these conditions are caused by malnourishment. This means the people have eaten the wrong amount or the wrong types of food.

Where does your energy come from?
You need energy for everything you do, even to sleep. This energy comes from your food. The energy in food is measured in joules (J) or kilojoules (kJ) – 1 kilojoule is the same as 1000 joules.

If you look on a food label it will tell you how much energy is stored in that food.

A State the unit that energy in food is measured in.

Why is it unhealthy to be underweight?
Some people do not eat enough food. In extreme cases this is known as starvation. If the energy in the food you eat is less than the energy you use, you will lose body mass. This leads to you being underweight. Underweight people:

- often suffer from health problems, such as a poor immune system
- lack energy to do things, and are often tired
- are likely to suffer from a lack of vitamins or minerals.

B State three problems caused by being underweight.

Why is it unhealthy to be overweight?
Some people eat too much, or eat too many fatty foods. If the energy content in the food you eat is more than the energy you use, you gain body mass. This is stored as fat under the skin. If a person becomes extremely overweight, they are said to be obese.

Overweight people have an increased risk of:

- heart disease
- stroke
- diabetes
- some cancers.
State three diseases that obese people are more likely to suffer from.

What are vitamin and mineral deficiencies?
If a person does not have enough of a certain vitamin or mineral they are said to have a deficiency. This can damage a person’s health. For example, a vitamin A deficiency can lead to ‘night blindness’. This makes it difficult for you to see clearly in dim light. A vitamin D deficiency can lead to a condition called rickets, where your bones become weak.

Name the condition caused by a vitamin A deficiency.

How much energy do you need?
Your body needs energy to function properly. The amount of energy you need depends on your age (as this affects your growth rate), your body size, and how active you are. The more exercise you do, the more energy your body requires.

Energy requirements
Use the graph below to estimate the energy that a female computer programmer needs each day. How did you arrive at your answer?

Daily energy requirements for different types of people.

Summary Questions

1. Copy and complete the sentences below.
 You gain the _____ you need to survive from food. Energy is measured in ______.
 If you take in more energy than you use you _____ body mass. If you become _____ your risk of ______ disease increases. An underweight person is often ______.
 (6 marks)

2. Use the graph on this page to answer the following questions.
 a. Calculate the extra energy a female office worker would need each day if she became pregnant.
 (2 marks)
 b. A male office worker starts a new job as a construction worker. Calculate the percentage increase in his daily energy needs.
 (4 marks)

3. Compare the health problems of being underweight with the health problems of being overweight.
 (6 marks)
You may sometimes notice your stomach rumbling. This is a hint that you need to eat. You know that the food contains nutrients. But how does your body get nutrients out of food?

What is the digestive system?
The digestive system is a group of organs that work together to break down food. The nutrients in most of the food you eat are large molecules, like lipids and proteins. During digestion these large molecules are broken down into small molecules of nutrients. These nutrients can then pass into the blood where they are used by the body.

Learning objectives
After this section you will be able to:
- state what happens during digestion
- describe the structure of the main parts of the digestive system
- describe how components of the digestive system are adapted to their function.

Link
You can learn more about molecules in 5.3.3 Compounds.

Fantastic fact
If you unravelled your small intestine it would be roughly four times taller than you – it is not very small!

During digestion large molecules are broken down into small molecules and pass into the bloodstream.

A State what happens during digestion.

Structures in the digestive system
The diagram opposite shows the main structures in your digestive system. It is often referred to as your gut.

- **Mouth**: Food is chewed and mixed with saliva. Teeth help to break the food into smaller chunks.
- **Gullet**: Food passes down this tube.
- **Stomach**: Food is mixed with digestive juices and acids. Digestive juices from the liver and pancreas are added and digestion is completed. Small molecules of nutrients pass through the intestine wall into the bloodstream.
- **Small intestine**: Only food that cannot be digested gets this far. Water passes back into the body, leaving a solid waste of undigested food called faeces.
- **Large intestine**: Faeces are stored here until they leave the body.
- **Rectum**: This is a muscular ring through which faeces pass out of the body.
- **Anus**: This is a muscular ring through which faeces pass out of the body.

B Name the structure that food passes along to reach the stomach.
Moving through the digestive system
Fibre in your food isn't digested but adds bulk to the food. Muscles push against this, forcing food along the gut. Eating lots of fibre-rich foods such as vegetables and wholemeal bread helps prevent constipation.

Muscles in the wall of the gut squeeze food along – a bit like squeezing a tube of toothpaste.

C Describe how food moves along the gut.

Passing into the blood
The small molecules of nutrients produced during digestion pass into the bloodstream through the wall of the small intestine. They are then transported around the body.

The small intestine needs to absorb the nutrients quickly, before the undigested food passes out of the body. The small intestine is specially adapted to this function. The wall of the small intestine is thin. It is also covered with tiny structures called villi. These stick out of the wall and give it a big surface area. They also contain blood capillaries to carry away the absorbed food molecules.

Villi in the small intestine increase the surface area so more nutrients can be absorbed.

Key Words
digestive system, digestion, gullet, stomach, small intestine, large intestine, rectum, anus, villi

Wordbank
Make a wordbank by listing all the scientific terms about digestion. You can refer to your wordbank as you progress through this topic.

digestive system, digestion, gullet, stomach, small intestine, large intestine, rectum, anus, villi

Summary Questions
1. Match each organ below to its role in digestion.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Role in Digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>stomach</td>
<td>food is chewed and mixed with saliva</td>
</tr>
<tr>
<td>small intestine</td>
<td>water is absorbed back into the body</td>
</tr>
<tr>
<td>large intestine</td>
<td>food is mixed with acid and digestive juices</td>
</tr>
<tr>
<td>rectum</td>
<td>faeces are stored here until they pass out of the body</td>
</tr>
<tr>
<td>mouth</td>
<td>small molecules of nutrients are absorbed into the bloodstream</td>
</tr>
</tbody>
</table>

(5 marks)

2. Describe the adaptations of the small intestine to its function.

(3 marks)

3. Explain why it is important to eat a fibre-rich diet.

(3 marks)

4. Describe in detail the passage of food through the digestive system.

(6 marks)
Have you seen the TV adverts that say that yoghurts and yoghurt drinks are good for your digestive system? They contain bacteria, which is important for digestion.

Bacteria in digestion

Your large intestine contains bacteria. These microorganisms live on the fibre in your diet. They make important vitamins such as vitamin K. These vitamins are then absorbed into your body and help to keep you healthy. The gut bacteria also help to break food down. Some foods, called probiotic foods, like live yoghurt, contain these useful bacteria.

A State why bacteria are important in your digestive system.

What’s in digestive juices?

Your teeth begin digestion by breaking down food into smaller pieces. The digestive juices in your gut contain enzymes. These are special proteins that can break large molecules of nutrients into small molecules. Large molecules in your food like starch, a type of carbohydrate, are made of lots of smaller molecules joined together. Enzymes chop these large molecules into the smaller molecules they are made from.

Enzymes are known as biological catalysts – they speed up digestion without being used up.

B State the role of enzymes in digestion.

Different types of enzyme

Different types of enzyme break down different nutrients. There are three main types of enzymes involved in digestion – carbohydrate, protease, and lipase.
Carbohydrase

Carbohydrase is an enzyme that breaks down carbohydrates into sugar molecules.

Protease

Protease is an enzyme that breaks down proteins into amino acids.

Lipase

Lipase is an enzyme that breaks down lipids into fatty acids and glycerol. Digestion of lipids takes place in the small intestine. It is helped by bile, a substance made in the liver. Bile breaks the lipids into small droplets that are easier for the lipase enzymes to work on.

Carbohydrates/proteins are broken down into sugar by the enzyme lipase/carbohydrase.

Proteins are broken down into amino acids by the enzyme carbohydrates/protease.

Lipids are broken down into fatty acids and glycerol by the enzyme lipase/ carbohydrates.

Starch is broken down into sugar molecules.

Protein is broken down into amino acids.

Key Words

- gut bacteria
- enzyme
- catalyst
- carbohydrase
- protease
- lipase
- bile

Summary Questions

1. Copy the sentences below, choosing the correct bold word.
 a. Carbohydrates/proteins are broken down into sugar by the enzyme lipase/carbohydrase.
 b. Proteins are broken down into amino acids by the enzyme carbohydrates/protease.
 c. Lipids are broken down into fatty acids and glycerol by the enzyme lipase/carbohydrase.

2. Explain why live yoghurt should be part of your diet.

3. Make a visual summary of the ideas on this page to compare the roles of enzymes and bacteria in digestion.
Key Points

Breathing
- Gas exchange takes place inside the lungs – oxygen is taken in and carbon dioxide is given out.
- Oxygen enters the body through the mouth and nose. It then travels down the windpipe, through a bronchus, then a bronchiole, into an alveolus, and diffuses into the blood.
- Exhaled air is warmer and contains more carbon dioxide and water vapour than inhaled air, but less oxygen.
- When you inhale, muscles between your ribs and the diaphragm contract. This increases the volume inside your chest. The pressure decreases and air is drawn into the lungs.
- When you exhale, muscles between your ribs and the diaphragm relax. This decreases the volume inside your chest. The pressure increases and air is forced out of your lungs.

Digestion
- Nutrients are essential substances that your body needs to survive. They are carbohydrates, lipids, proteins, vitamins, mineral, water, and fibre.
- To remain healthy you must eat a balanced diet. This means eating food containing the right nutrients in the correct amounts.
- Underweight people often lack energy. They may also suffer from a vitamin or mineral deficiency, which can cause problems like a poor immune system.
- Overweight people have an increased risk of heart disease, diabetes, and some cancers.
- During digestion large molecules like lipids and proteins are broken down into small molecules. They can then pass into the blood where they are used by the body.
- Enzymes are proteins that can break large molecules into small molecules. They are biological catalysts – they speed up digestion without being used up.

Key Words
- gas exchange, lungs, ribs, respiratory system, trachea, bronchus, bronchiole, alveolus, breathing, inhale, respiration, exhale, condense, contract, diaphragm, lung volume, asthma, drug, medicinal drug, recreational drug, addiction, withdrawal symptoms, ethanol, depressant, alcoholic, unit of alcohol, passive smoking, stimulant, nutrient, carbohydrate, lipid, protein, vitamin, mineral, dietary fibre, balanced diet, food test, hypothesis, malnourishment, starvation, obese, deficiency, digestive system, digestion, gullet, stomach, small intestine, large intestine, rectum, anus, villi, gut bacteria, enzyme, catalyst, carbohydrase, protease, lipase, bile

BIG Write

Say no to drugs
You work for the NHS as a communications officer. You have been asked to produce an antidrugs leaflet. It will be given to all teenagers as part of an antidrugs campaign.

Task
Write the text that will appear in the leaflet. It should contain information on smoking, alcohol, and illegal recreational drugs.

Tips
- Make sure your points are clear, concise, and convincing – back up your arguments with scientific facts.
- Keep your audience in mind – your leaflet needs to appeal to teenagers and all scientific concepts must be explained clearly.
End-of-Big Idea questions

1. To remain healthy you must eat a balanced diet. Draw a line to match the nutrient to its function in the body.

- **Carbohydrates**: used for growth and repair.
- **Lipids**: needed in small amounts to keep you healthy.
- **Proteins**: provide energy.
- **Vitamins and minerals**: provide a store of energy and are used to insulate the body.

(4 marks)

2. This diagram shows your digestive system.

- **a** Name structure X.
 - (1 mark)
- **b** State what happens in structure Y.
 - (1 mark)
- **c** Which letter represents the structure that stores faeces until they leave the body?
 - (1 mark)
- **d** Describe the role of the stomach in digestion.
 - (2 marks)

(5 marks)

3. A student wants to do a food test to find out which nutrients are in crisps. She starts by making a solution of the crisps.

- **a** Name the piece of equipment she should use to break the crisps into small pieces.
 - (1 mark)
- **b** Suggest **two** safety precautions the student should take before beginning the test.
 - (2 marks)
- **c** Describe how the student should test the food solution for protein.
 - (3 marks)

(6 marks)

4. This diagram shows the main structures in the respiratory system.

- **a** Name the bones that protect the lungs.
 - (1 mark)
- **b** Name the process that occurs in the alveolus.
 - (1 mark)
- **c** State what the diaphragm is made of.
 - (1 mark)
- **d** Describe what happens in the lungs when you exhale.
 - (3 marks)

(6 marks)

5. Enzymes are special proteins that play a crucial role in digestion.

- **a** Describe the role of enzymes in digestion.
 - (1 mark)
- **b** Explain why enzymes are called catalysts.
 - (2 marks)
- **c** Compare how and where carbohydrates and proteins are digested.
 - (4 marks)
- **d** Explain how lipids are broken down and digested.
 - (3 marks)

(10 marks)

6. Compare the main differences in the composition of inhaled and exhaled air.

- (6 marks)