
Bob Reeves

AQA
A-level

Computer
Science

Includes AS and A-level

Also available:

AQA A-level Computer Science Dynamic Learning
Dynamic Learning is an online subscription solution used in thousands of schools. It
supports teachers and students with high quality content and unique tools. Dynamic
Learning incorporates Teaching and Learning resources, Whiteboard and Student
eTextbook elements that all work together to give you the ultimate classroom and
homework resource.

Written by a leading computing author the Teaching and Learning resource for AQA
A-level Computer Science features:
•	 Support tasks, both written and practical, the latter supported with sample scripts
•	 Task answers and solutions to practical tasks
•	 Programming tutorials
•	 Interactive assessments
•	 Whole class presentations with introductions to key topics
•	 Teacher notes
•	 Personal Tutors
•	 Exam guidance - exemplar questions, answers, examiner comments, mark

schemes

Publication: April 2015

You can evaluate Dynamic Learning for 30 days – visit www.hoddereducation.co.uk/
dynamic-learning

Tackle the new A-level specifications confidently with the leading names in
Computing education. Our highly experienced and respected authors and speakers
will help you find the right path to student success, with textbooks, digital teaching
and learning resources and CPD for you to plan and deliver outstanding lessons.

The following Student’s book has been selected for AQA’s official approval process
AQA A-level Computer Science  Bob Reeves  9781471839511  April 2015  £29.99

To pre-order or sign up for Inspection Copies visit
www.hoddereducation.co.uk/ALevelComputing/AQA

Coming soon
•	 My Revision Notes: AQA A-level Computer Science (publishing January 2016)
•	 Philip Allan Updates CPD courses to help you teach the new AQA specifications

Sign up to our regular computing updates at www.hoddereducation.co.uk

Bob Reeves

AQA
A-level

Computer
Science

Includes AS and A-level

Bob Reeves

AQA
A-level

Computer
Science

Includes AS and A-level

Bob Reeves

AQA
A-level

Computer
Science

Includes AS and A-level

C
ontents

3

Contents
	 Section One	 Fundamentals of Programming
	 Chapter 1	 Programming Basics

	 Chapter 2	 Programming Concepts

	 Chapter 3	 Basic Operations in Programming Languages

	 Chapter 4	 Subroutines, Local and Global Variables

	 Chapter 5	 Structured programming

	 Chapter 6	 Object-Oriented Programming Concepts

	 Section Two	 Fundamentals of Data Structures
	 Chapter 7	 Data Structures and Abstract Data Types

	 Chapter 8	 Queues and Stacks

	 Chapter 9	 Graphs and trees

	 Chapter 10	 Hash Tables

	 Chapter 11	 Dictionaries and Vectors

	 Section Three	 Fundamentals of Algorithms
	 Chapter 12	 Graph and Tree Traversal

	 Chapter 13	 Binary, Binary Tree and Linear Search

	 Chapter 14	 Reverse Polish Notation

	 Chapter 15	 Sorting Algorithms – Bubble and Merge

	 Chapter 16	 Dijkstra’s Shortest Path Algorithm

	 Section Four	 Fundamentals of Computational Thinking
	 Chapter 17	 Abstraction and Automation

	 Chapter 18	 Finite State Machines

	 Chapter 19	 Maths for Regular Expressions

	 Chapter 20	 Regular and Context Free Languages

	 Chapter 21	 Big O Notation and Classification of Algorithmic Problems

	 Chapter 22	 The Turing Machine

	 Section Five	 Fundamentals of Data Representation
	 Chapter 23	 Number Systems

	 Chapter 24	 Number Bases

	 Chapter 25	 Binary Number System

C
o

n
te

n
ts

4

	 Chapter 26	 Coding Systems

	 Chapter 27	 Encryption

	 Section Six	 Fundamentals of Computer Systems
	 Chapter 28	 Hardware and Software

	 Chapter 29	 Classification of Programming Languages and Translation

	 Chapter 30	 Logic Gates

	 Chapter 31	 Boolean Algebra

	 Section Seven	 Fundamentals of Computer Organisation and
Architecture

	 Chapter 32	 Internal Hardware of a Computer

	 Chapter 33	 The Stored Program Concept and Processor Components

	 Chapter 34	 The Processor Instruction Set and Addressing Modes

	 Chapter 35	 External Hardware Devices

	 Section Eight	 Consequences of Uses of Computing
	 Chapter 36	 Moral, ethical, legal and cultural Issues

	 Section Nine	 Fundamentals of Communication and Networking
	 Chapter 37	 Communication Basics

	 Chapter 38	 Networks

	 Chapter 39	 The Internet

	 Chapter 40	 Internet Security

	 Chapter 41	 The TCP/IP Protocol

	 Chapter 42	 Client / Server Networks

	 Section Ten	 Fundamentals of Databases
	 Chapter 43	 Database Concepts

	 Chapter 44	 Structured Query Language

	 Chapter 45	 Big Data

	 Section Eleven	 Fundamentals of Functional Programming
	 Chapter 46	 Basics of Functional Programming

	 Chapter 47	 Writing Functional Programs

	 Section Twelve	 Fundamentals of Software Development
	 Chapter 48	 Software Development

	 Chapter 49	 The Skeleton Program

	 Chapter 50	 Coursework

5

Introduction

●● What is computer science?
The world of computer science continues to develop at an amazing rate.
If you had spoken to an A-level student embarking on a computer science
course just ten years ago they might not have believed that in the year
2015 we would all be permanently connected to the internet on smart
phones, watching movies in high definition on 55-inch curved-screen TVs,
streaming our favourite music to our phones from a database of millions
of tracks stored in “the cloud” or carrying round a tablet that has more
processing power than the flight computer on the now decommissioned
space shuttle.

No-one really knows where the next ten years will take us. The challenge
for you as a computer scientist is to be able to respond to this ever-changing
world and to develop the knowledge and skills that will help you to
understand technology that hasn’t yet been invented!

Studying A-level computer science gives you a solid foundation in the
underlying principles of computing, for example: understanding how
algorithms and computer code are written; how data is stored; how data
is transmitted around networks; and how hardware and software work. It
also provides you with a deeper level of understanding that goes beyond
the actual technology. For example, you will learn about how to use
computation to solve problems and about the close links between computer
science, mathematics and physics.

You might be surprised to learn that many of the key principles of
computing were developed before the modern computer, with some
concepts going back to the ancient Greeks. At the same time, you will
be learning about the latest methods for solving computable problems in
today’s world and developing your own solutions in the form of programs
or apps.

Studying computer science at A-level is challenging, but it is also highly
rewarding. There are very few jobs that do not involve the use of computers
and having a good understanding of the science behind them will
effectively prepare you for further study or employment.

In
tr

o
d

u
cti

o

n

6

●● Course coverage and how to use this book
This book has been written to provide complete coverage of the AQA
Computer Science specifications for AS and A-level that are taught from
September 2015. The content of the book is matched and sequenced
according to the specification, and organised into sections in accordance
with the main specification headings used by AQA.

Students studying A-level need to be familiar with all of the content of the
AS specification and in addition need to cover those sections highlighted
throughout the text, which are unique to A-level. There is support for every
section of the specification including the written papers, and general advice
on tackling the skeleton program and the coursework.

The main objective of the book is to provide a solid foundation in the
theoretical aspects of the course. Further support and practical examples of
coded solutions are provided on line via Dynamic Learning.

Chapters contain:

Introduction
This is a concise introduction to
set the scene.

Learning objectives
Matched to the specification,
these summarise what you will
learn by the end of the chapter.

The main text
This contains detailed
definitions, explanations and
examples.

Key words
All of the key words are
identified with concise
definitions. These form a
glossary, which is useful
for revision and to check
understanding.

Specification coverage
Taken directly from the
specification, it shows which
elements of AS and A-level are
covered within each chapter.

Key points
All of the main points for each
chapter are summarised. These
are particularly useful as a
revision aid.

Diagrams and images
The book uses diagrams and
images wherever possible to aid
understanding of the key points.

Introduction

7

Acknowledgements
Dave Fogg for producing the code examples used.

Paul Varey for his initial proofread.

Dedicated to Eli Reeves

Code example
Where relevant there are examples of
pseudo-code or actual code to demonstrate
particular concepts. Code examples in this
book are mainly written using the VB.NET
framework. VB Express 10.0 has been used
as this is available as a free download.
The code can also be migrated into other
versions of VB.

Tasks
These are activities designed to
test your understanding of the
contents of the chapter. These
may be written exercises or
computer tasks.

Practice questions
These are provided for each
section and are contextualised
so that they match the style of
AQA questions.

Research/study questions
These questions go beyond
the specification and provide a
further challenge designed to
encourage you to “read around
the subject” or develop your
skills and knowledge further.

8

	28	 Number Systems

Specification coverage
3.5.2.1 Number base

3.5.3.1 Bits and Bytes

3.5.3.2 Units

Introduction
Computers process data in digital form. Essentially this means that
they use microprocessors, also referred to as ‘chips’, to control them.
A chip is a small piece of silicon implanted with millions of electronic
circuits. The chip receives pulses of electricity that are passed around
these microscopic circuits in a way that allows computers to create text,
numbers, sounds and graphics. All of this is achieved by manipulating
binary data. In this chapter you will discover how binary is used and how
it relates to other number bases such as decimal and hexadecimal.

 Learning objectives
In this chapter you will learn:
•	 The function of bits and bytes and how they are combined to form

larger units
•	 How number bases work including binary, decimal and hexadecimal
•	 How to convert binary to decimal and vice versa
•	 How to convert binary to hexadecimal and vice versa
•	 How to convert decimal to hexadecimal and vice versa

●● The bit
It all comes down to the ‘bit’. A bit is a binary digit. The chip can only handle
electricity in a relatively simple way – either electricity is flowing, or it is not.
This is often referred to as two ‘states’. The processor can recognise whether it
is receiving an ‘off’ signal or an ‘on’ signal. This is handled as a zero (0) for off
and a one (1) for on. A binary digit therefore is either a 0 or a 1.

The processor now needs to convert these 0s and 1s into something useful
for the user. Although it might be difficult to comprehend, everything you
use your computer for is made up of 0s and 1s. To help you understand
this, think of Morse code.

Keywords
Bit: a single digit from a binary
number - either a zero or a one.

Th
e b

yte

9

Morse code only uses two signals – a dot and a dash. These two states can
be used to create every letter in the alphabet. It achieves this by stringing
dots and dashes together in different combinations. Perhaps the most
well-known piece of Morse code is ‘dot dot dot – dash dash dash – dot
dot dot’. ‘Dot dot dot’ is S and ‘dash dash dash’ is O. Therefore we get SOS
which stands for Save Our Souls – the standard distress call for ships in
trouble.

Computers string zeros and ones together in a similar way to represent text,
numbers, sound, video and everything else we use our computers for. The
really clever thing about computers is their ability to string zeros and ones
together at very high speed. The ‘clock speed’ of your computer indicates the
speed at which the signals are sent around the processor. A clock speed of
2 GHz means that it will receive 2000 million of these on/off pulses per second.

Figure 28.1 Binary digits

●● The byte
The first hint most students get of the nature of the byte is when they
begin to measure the size of memory or disk space in terms of megabtyes,
gigabytes and terabytes.

A single byte is a string of eight bits. Eight is a useful number of bits as
it creates enough permutations (or combinations) of zeros and ones to
represent every character on your keyboard. Follow this through:

●	 With one bit we have two permutations: 0 and 1.
●	 With two bits we have four permutations: 00, 01, 10 and 11. This could

be represented as 22 or 2 × 2. As we increase the number of bits, we
increase the number of permutations by the power of two.

●	 Three bits would give us 23 which is 2 × 2 × 2 = 8 permutations.
●	 Four bits would give us 24 permutations which is 2 × 2 × 2 × 2 = 16

permutations.

If we stop at four you can see that 4 bits would give us enough
permutations to represent 16 different letters of the alphabet, 16 different
numbers, 16 different colours or 16 different sounds. If we move on to 8
bits, we get 28 which is 256 permutations. Therefore, 8 bits is enough to
represent every letter in the alphabet and every keyboard character with a
few to spare. 8 bits is referred to as a byte, which represents one character.

Keywords
Byte: a group of bits, typically
8, used to represent a single
character.

Key Points
•	 Computers process data in

digital form, that is, as series
of 0s and 1s.

•	 0s and 1s are called binary
digits or bits.

•	 Bits are grouped together to
create bytes.

•	 Bytes are grouped together to
create kilobytes, megabytes,
gigabytes and terabytes.

	2
8	

N
um

be
r S

ys
te

m
s

10

The basic fact here is that the more bits you use, the greater the range of
numbers, characters, sounds or colours that can be created. Taking numbers
as an example, as we have seen, 8 bits would be enough to represent 256
different numbers (0 – 255). As the number of bits increases, the range of
numbers increases rapidly. For example 216 would give 65 536 permutations,
224 would give approximately 16 million and 232 would give over 4 billion.

●● Units
Larger combinations of bytes are used to measure the capacity of memory and
storage devices. The size of the units can be referred to either using binary or
decimal prefixes. For example, in decimal, the term kilo is commonly used to
indicate a unit that is 1000 times larger than a single unit. So the correct term
would be kilobyte (K). In binary, the correct term is actually kibibyte (Ki) with
1024 bytes being the nearest binary equivalent to 1000.

It is common practice to show the size of the numbers using superscript
values. For example 210 Ki indicates binary (base 2) to the power of ten,
which is 1024 bytes. 103 K indicates decimal base ten to the power of three,
which is 1000 bytes.

Common units are shown below using both binary and decimal prefixes:

Binary Decimal
kibibyte Ki 210 kilobyte K 103

mebibyte Mi 220 megabyte M 106

gibibyte Gi 230 gigabyte G 109

tebibyte Ti 240 terabyte T 1012

●● Number bases
A number base indicates how many different digits are available when
using a particular number system. For example, decimal is number base
10 which means that it uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and
binary is number base 2 which means that it uses two digits: 0 and
1. Different number bases are needed for different purposes. Humans
use number base 10, whereas computers use binary as this represents
digital data.

The number base determines how many digits are needed to represent a
number. For example, the number 98 in decimal (base 10) requires two
digits. The binary (base 2) equivalent is 1100010 which requires seven
digits. As a consequence of this there are many occasions in computing
when very long binary codes are needed. To solve this problem, other
number bases can be used, which require fewer digits to represent
numbers. For example, some aspects of computing involve number base 16
which is referred to as ‘hexadecimal’.

The accepted method for representing different number bases (in textbooks
and exam questions) is to show the number with the base in subscript. For
example:

●	 4310 is decimal
●	 10112 is binary
●	 2A716 is hexadecimal.

Keywords
Unit: The grouping together
of bits of bytes to form larger
blocks of measurement e.g. KG,
MB.

Keywords
Number base: The amount
of digits available within a
particular number system, e.g.
base 10 for decimal, base 2 for
binary.

W
o

r
ki

n
g

 w
ith

 n
u

m
b

er
 b

as
es

11

Hexadecimal
Hexadecimal or ‘hex’ is particularly useful for representing large numbers
as fewer digits are required. Hex is used in a number of ways. Memory
addresses are shown in hex format, as are colour codes. The main
advantage of hex is that two hex digits represent one byte.

Consider the number 110100112. This is an 8-bit code which when
converted to decimal equals 21110. The same number is hex is D316. This
basic example shows that an 8-bit code in binary can be represented as a
two-digit code in hex. Consequently hex is often referred to as ‘shorthand’
for binary as it requires fewer digits.

As it is number base 16, hex uses 16 different digits: 0 to 9 and A to F. The
table below shows decimal numbers up to 31 with the hex equivalents:

Decimal Hex Decimal Hex
0 0 16 10
1 1 17 11
2 2 18 12
3 3 19 13
4 4 20 14
5 5 21 15
6 6 22 16
7 7 23 17
8 8 24 18
9 9 25 19
10 A 26 1A
11 B 27 1B
12 C 28 1C
13 D 29 1D
14 E 30 1E
15 F 31 1F

There is scope for confusion here as humans rarely use letters as numbers.
Also, the numbers in hex may convert to different numbers in decimal. For
example, the number 16 in decimal is the equivalent of the number 10 (one
zero) in hex.

●● Working with number bases
When performing any calculations, humans use number base 10, probably
because we have ten digits on our hands. Commonly this system is known
as decimal and uses 10 different digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. When
we get to 9 we add an extra digit and start again. When we get to 99, we
add a further digit and so on. Each digit we add is worth ten times the
previous digit. This is easier to understand if you think back to how you
were taught maths at primary school.

The number 2098 is easy to understand in decimal terms. To state the
obvious, it is made up of (2 × 1000) + (0 × 100) + (9 × 10) + (8 × 1). When
creating a number, we start with the units and add the further digits as
needed to create the number we want. Each extra digit is ten times the
previous one because we are using number base 10.

Key Points
•	 Computing uses three main

number bases: binary (base
2), decimal (base 10) and
hexadecimal (base 16).

•	 You need to be able to convert
between the three number
bases.

	2
8	

N
um

be
r S

ys
te

m
s

12

Binary is number base 2 and works on exactly the same principle. This time
we only have two digits, 0 and 1. It has to be binary because computers only
work by receiving a zero or one (off and on). So, 1 is the biggest number we
can have with one bit. To increase the size of the number, we add more bits.
Each bit is worth two times the previous bit because we are using number
base 2. The table below shows an 8-bit binary number 10000111. Notice the
value of each new bit is increasing by 2 each time, as binary is base 2.

128	 64	 32	 16	 8	 4	 2	 1

1	 0	 0	 0	 0	 1	 1	 1

Again, using the same principle as with decimal to work out the number
we have:

(1 × 128) + (1 × 4) + (1 × 2) + (1 × 1). This adds up to 135.

Therefore 10000111 in binary = 135 in decimal.

Binary to decimal conversions
Binary numbers are converted to decimal integers as follows:

●	 Write down a binary number (e.g. 10000111).
●	 Above the number, starting from the ‘least significant bit’ (LSB) write the

number 1.
●	 As you move left from the LSB to the ‘most significant bit’ (MSB) double

the value of the previous number:
MSB	 LSB
	128	 64	 32	 16	 8	 4	 2	 1
	 1	 0	 0	 0	 0	 1	 1	 1

●	 Wherever there is a 1, add the decimal value: the above example
represents one 128, one 4, one 2 and a 1 giving a total value of 135 (128
+ 4 + 2 + 1 = 135). Therefore 10000111 in binary equals 135 as a decimal
integer.

Decimal to binary conversions
To convert a decimal integer to a binary number, use the same method as
above, but working the other way. For example, to convert the number 98:
●	 Write down the power of 2 sequence. (Eight bits are used here but you

will notice that you only need seven for this example.)

MSB	 LSB
	128	 64	 32	 16	 8	 4	 2	 1

●	 Starting from the MSB put a 1 or 0 in each column as necessary to
ensure that it adds up to 98 as follows:

	 0 under 128
	 1 under 64
	 1 under 32
	 0 under 16
	 0 under 8
	 0 under 4
	 1 under 2
	 0 under 1

Therefore 98 in decimal = 01100010 in binary.

W
o

r
ki

n
g

 w
ith

 n
u

m
b

er
 b

as
es

13

Another way of carrying out this calculation is to carry out repeated
divisions on the decimal number as follows:

98 divided by 2 = 49 with a remainder of 0
49 divided by 2 = 24 with a remainder of 1
24 divided by 2 = 12 with a remainder of 0
12 divided by 2 = 6 with a remainder of 0
6 divided by 2 = 3 with a remainder of 0
3 divided by 2 = 1 with a remainder of 1
1 divided by 2 = 0 with a remainder of 1

Notice that you keep dividing by 2 until there is nothing left to divide.
Reading from the bottom this gives us 1100010 which equals 98. (Note that
the leading zero is omitted.)

Check your answer by working it back the other way:

MSB	 LSB
	128	 64	 32	 16	 8	 4	 2	 1
	 0	 1	 1	 0	 0	 0	 1	 0

64 + 32 + 2 = 98

Decimal to hex conversions
A common approach to convert decimal integers to hex is to first convert
the decimal to binary and then convert the binary to hex. Taking the
decimal number 211 as an example:

●	 Work out the binary equivalent.
	 128	 64	 32	 16	 8	 4	 2	 1
	 1	 1	 0	 1	 0	 0	 1	 1
●	 Split the binary number into two groups of four bits and convert each into

the hex equivalent.
	 8	 4	 2	 1		 8	 4	 2	 1
	 1	 1	 0	 1		 0	 0	 1	 1

Therefore 110100012 = 21110

8 + 4 + 1 = D (the hex equivalent of 13)
and 2 + 1 = 3

Therefore 21110 = 110100112 = D316

Hex to decimal conversions
The process here is to convert the hex to binary, and then the binary into
decimal. Hex to binary conversions are the reverse of the above process.
Take the hex number, and then convert each digit in turn into its binary
equivalent using groups of four bits. Take 2A316 as an example:

	 8	 4	 2	 1		 8	 4	 2	 1		 8	 4	 2	 1
	 0	 0	 1	 0		 1	 0	 1	 0		 0	 0	 1	 1

2 = 0010

A = 1010 (10 in decimal)

3 = 0011

Therefore 10101000112 is the binary equivalent of 2A316.

This binary code can then be converted into decimal in the usual way:

	2
8	

N
um

be
r S

ys
te

m
s

14

	 512	 256	 128	 64	 32	 16	 8	 4	 2	 1
	 1	 0	 1	 0	 1	 0	 0	 0	 1	 1

512 + 128 + 32 + 2 + 1 = 67510

When carrying out a conversion, it is useful to remember the binary
equivalent of the 16 digits used in hex as shown in the table above.

 Tasks
1	 Explain why computers can only process data in binary form.
2	 What is the biggest decimal integer you can represent with:

a)	4 bits b)	8 bits c)	16 bits
3	 How many different permutations of numbers can you represent with:

a)	4 bits
b)	8 bits

c)	16 bits
d)	20 bits

e)	24 bits

4	 Convert the following decimals into binary:
a)	10
b)	12

c)	15
d)	65

e)	165

5	 Some programming languages use hexadecimal. Explain what
hexadecimal and what the benefits are of using this system compared
to binary or decimal.

6	 Convert the following hexadecimal into binary:
a)	10
b)	12

c)	1F
d)	F1

7	 Convert the following hexadecimal into decimal:
a)	E
b)	21

c)	17
d)	AB

8	 Identify a situation where it would be appropriate to use the following
units of measurement:
a)	Kilobyte b)	Megabyte c)	Terabyte

 Study / Research Tasks
1	 Write a program that converts binary to decimal and vice versa.
2	 Write a program that converts hex to decimal and vice versa.
3	 In computing we commonly use binary, decimal and hexadecimal. In

the past, computing used octal. Find out how it works, what is was
used for and why it is not widely used in computing these days.

4	 Ancient number systems did not use zero. Explain how a number
system can work without a zero.

5	 Apart from the ones you have already looked at, what other number
bases are used, or have been used throughout history.

6	 Why do we use base 12 and base 60 for telling the time rather than base 10?
7	 Find a simulation of a binary watch online. See if you can learn to tell

the time as quickly in binary as you can using decimals.
8	 Identify a situation where it would be appropriate to use the following

units of measurement:
a)	Exabyte
b)	Zettabyte
c)	Yottabyte

The Publishers would like to thank the following for permission to reproduce copyright material:

P.7 © carloscastilla – Fotolia.

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked
the Publishers will be pleased to make the necessary arrangements at the first opportunity.

Although every effort has been made to ensure that website addresses are correct at time of going to
press, Hodder Education cannot be held responsible for the content of any website mentioned. It is
sometimes possible to find a relocated web page by typing in the address of the home page for a website
in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from
wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to
the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 4SB. Telephone: (44)
01235 827720. Fax: (44) 01235 400454. Lines are open 9.00–17.00, Monday to Saturday, with a 24-
hour message answering service. Visit our website at www.hoddereducation.co.uk

© Bob Reeves 2015

First published in 2015 by

Hodder Education
An Hachette UK Company,
338 Euston Road
London NW1 3BH

Impression number 5 4 3 2 1

Year 2019 2018 2017 2016 2015

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, or held within any information storage and retrieval system, without
permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited.
Further details of such licences (for reprographic reproduction) may be obtained from the Copyright
Licensing Agency Limited, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

Cover photo © LaCozza – Fotolia

Typeset in 11/13 pt Berkely Oldstyle

ISBN 978 1 447 183951 1

Practice Questions
1.	 Convert the binary data 10110111 00111110 into hexadecimal.	

2.	Give one example of where hexadecimal numbers are used, and explain
why they are used here rather than binary numbers.

3.	 What is the decimal equivalent of the hexadecimal number E4?

Dynamic Learning

AQA A-level Computer Science Dynamic Learning

This book is fully supported by Dynamic Learning – the online
subscription service that helps make teaching and learning easier.
Dynamic Learning provides unique tools and content for:
●● front-of-class teaching
●● streamlining planning and sharing lessons
●● focused and flexible assessment preparation
●● independent, flexible student study

Sign up for a free trial – visit: www.hoddereducation.co.uk/dynamiclearning

This sample chapter is from AQA A-level Computer Science, the new textbook for
the AQA AS and A-level specifications, for first teaching from September 2015.
This title has been selected for AQA’s official approval process.
AQA A-level Computer Science gives students the confidence to think creatively
and progress through the AQA AS and A-level specifications. Detailed coverage of
the specifications enriches their understanding of the fundamental principles of
computing, whilst a range of activities help to develop the programming and
computational thinking skills they need for success at A-level and beyond.
•	Helps build a thorough understanding of the fundamental principles examined in

the AQA A-level Computer Science specifications (including programming,
algorithms, data structures and representation, systems, databases and
networks, uses and consequences)
•	Provides clear coverage and progression through the AS and A-level

specifications, written by a leading computer science author
•	Prepares students to tackle the various demands of the course, from

programming and theoretical assessments to the investigative project at A-level
•	Helps students develop key skills through frequent coding and exam practice, in

order that they can demonstrate and apply their knowledge of the principles of
computer science, and design, program and evaluate problem-solving computer
systems.

Bob Reeves is an experienced teacher and examiner, and well-respected author of
resources for Computing and ICT across the curriculum.

Computer
Science

AQA
A-level

Textbook subject to
change based on Ofqual
feedback

Includes AS and A-level

