

AQA AS Level Computer Science
2nd Edition
P.M. Heathcote

R.S.U. Heathcote

Published by
PG Online Limited
The Old Coach House
35 Main Road
Tolpuddle
Dorset
DT2 7EW
United Kingdom
sales@pgonline.co.uk
www.pgonline.co.uk

2016

ii

Acknowledgements
We are grateful to the AQA Examination Board for permission to use questions from past papers.

The answers in the Teacher’s Supplement are the sole responsibility of the authors and have neither
been provided nor approved by the examination board.

We would also like to thank the following for permission to reproduce copyright photographs:

Screenshots of Arriva Bus App © Arriva PLC
Colossus photograph © The National Archives
Google Maps ‘StreetView’ © Google 2015
Other photographic images © Shutterstock

A catalogue entry for this book is available from the British Library

ISBN: 978-1-910523-06-3

Copyright © P.M.Heathcote and R.S.U.Heathcote 2016

All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the prior written permission of the copyright owner.

Printed and bound in Great Britain by Lightning Source Inc., Milton Keynes

Graphics: Roger Stayte and Rob Heathcote

Cover picture © ‘Golden Moor’ 2014
Oil on canvas
Reproduced with the kind permission of Heather Duncan
www.heatherduncan.com

Design and artwork by OnThree
www.on-three.com

Typeset by Chapter One (London) Ltd

First edition 2015, reprinted 2016
Second edition 2016, reprinted 2016

iii

Preface
The aim of this textbook is to provide detailed coverage of the topics in the new AQA AS Level Computer
Science specification.

The book is divided into six sections and within each section, each chapter covers material that can
comfortably be taught in one or two lessons.

In the first year of this course there will be a strong emphasis on learning to program. You will start by
learning the syntax of your chosen programming language – that is, the rules of how to write correct
statements that the computer can understand. Then you will code simple programs, building up your
skills to the point where you can understand and make additions and amendments to a program
consisting of several hundred lines of code.

Sections 1 and 2 of this book can be studied in parallel with your practical programming sessions.
It will give you practice in the skills you need to master.

At the end of the year, if you are sitting the AS level exam, Paper 1 will test your general knowledge
of programming and your ability to code, and ask you to add and make amendments to a substantial
program which you will have had a chance to look at and run beforehand.

Paper 2 will test your knowledge and understanding of the theory parts of the specification.

If you are sitting the A level exam after two years, rather than the AS level, these papers will be a
useful end-of-year test of your grasp of the subject, before you go on to cover the second half of the
specification.

Each chapter contains exercises and questions, some from past examination papers, and answers to all
these are available to teachers only in a Teachers Supplement which can be ordered from our website
www.pgonline.co.uk.

Approval message from AQA

This textbook has been approved by AQA for use with our qualification. This means that we have
checked that it broadly covers the specification and we are satisfied with the overall quality. Full details of
our approval process can be found on our website.

We approve textbooks because we know how important it is for teachers and students to have the right
resources to support their teaching and learning. However, the publisher is ultimately responsible for the
editorial control and quality of this book.

Please note that when teaching the AS Level Computer Science course, you must refer to AQA’s
specification as your definitive source of information. While this book has been written to match the
specification, it cannot provide complete coverage of every aspect of the course.

A wide range of other useful resources can be found on the relevant subject pages of our
website: www.aqa.org.uk.

iv

Contents

Section 1
Fundamentals of programming� 1

Chapter 1	 Programming basics� 2

Chapter 2	 Selection� 8

Chapter 3 	 Iteration� 13

Chapter 4	 Arrays� 17

Chapter 5	 Subroutines� 21

Chapter 6	 Files and exception handling� 29

Section 2
Problem solving and theory of computation� 33

Chapter 7	 Solving logic problems� 34

Chapter 8	 Structured programming� 39

Chapter 9 	 Writing and interpreting algorithms� 42

Chapter 10	 Testing and evaluation� 48

Chapter 11	 Abstraction and automation� 52

Chapter 12	 Finite state machines� 60

Section 3
Data representation� 67

Chapter 13	 Number systems� 68

Chapter 14	 Bits, bytes and binary� 72

Chapter 15 	Binary arithmetic and the representation of fractions� 77

Chapter 16	 Bitmapped graphics� 83

Chapter 17	 Digital representation of sound� 88

Chapter 18	 Data compression and encryption algorithms� 93

 

v

Section 4
Hardware and software� 99

Chapter 19	 Hardware and software� 100

Chapter 20	 Role of an operating system� 103

Chapter 21 	Programming language classification� 106

Chapter 22	 Programming language translators	� 110

Chapter 23	 Logic gates� 114

Chapter 24	 Boolean algebra� 118

Section 5
Computer organisation and architecture� 125

Chapter 25	 Internal computer hardware� 126

Chapter 26	 The processor� 132

Chapter 27 	The processor instruction set� 138

Chapter 28	 Assembly language� 142

Chapter 29	 Input-output devices� 148

Chapter 30	 Secondary storage devices� 154

Section 6
Communication: technology and consequences� 158

Chapter 31	 Communication methods� 159

Chapter 32	 Network topology� 164

Chapter 33 	Client-server and peer-to-peer� 168

Chapter 34	 Wireless networking, CSMA and SSID� 171

Chapter 35	 Communication and privacy� 176

Chapter 36	 The challenges of the digital age� 179

References	� 185

Index� 186

CHAPTER 1 – PROGRAMMING BASICS

5

String-handling functions
Programming languages have a number of built-in string-handling methods or functions. Some of the
common ones in a typical language are:

len(string)	 Returns the length of a string

string.substring(index1,index2)	Returns a portion of string inclusive of the characters at 	
	 each index position

string.find(str)	 Determines if str occurs in a string. Returns index (the 		
	 position of the first character in the string) if found, and -1 	
	 otherwise. In our pseudocode we will assume that string(1)
	 is the first element of the string, though in Python, for 		
	 example, the first element is string(0)

ord("a")	 Returns the integer value of a character (97 in this example)

chr(97)	 Returns the character represented by an integer 		
	 ("a" in this example)

Q3:	 What will be output by the following lines of code?

	 x = "Come into the garden, Maud"
	 y = len(x)
	 z = x.find("Maud")
	 OUTPUT "x= ",x
	 OUTPUT "y= ",y
	 OUTPUT "z= ",z

To concatenate or join two strings, use the + operator.

e.g. “Johnny” + “Bates” = “JohnnyBates”

String conversion operations

int("1")	 converts the character “1” to the integer 1

str(123)	 converts the integer 123 into a string “123”

float("123.456")	 converts the string “123.456” to the real number 123.456

str(123.456)	 converts the real number 123.456 to the string “123.456”

date(year,month,day)	 returns a number that you can calculate with

Converting between strings and dates is usually handled by functions built in to string library modules,
e.g. strtodate("01/01/2016").

Example:

	 date1 ß strtodate("18/01/2015")

	 date2 ß strtodate("30/12/2014")

	 days ß date1 - date2
	 OUTPUT date1, date2, days

This will output

2015-01-18 2014-12-30 19

1-1

SECTION 2 – PROBLEM SOLVING AND THEORY OF COMPUTATION

60

Chapter 12– Finite state machines

Objectives
•	 Understand what is meant by a finite state machine

•	 List some of the uses of a finite state machine

•	 Draw and interpret simple state transition diagrams for finite state machines with no output

•	 Draw a state transition table for a finite state machine with no output and vice versa

What is a finite state machine?
A finite state machine is a model of computation used to design computer programs and sequential logic
circuits. It is not a “machine” in the physical sense of a washing machine, an engine or a power tool, for
example, but rather an abstract model of how a machine reacts to an external event. The machine can
be in one of a finite number of states and changes from one state to the next state when triggered by
some condition or input (say, a signal from a timer).

In a finite state machine:

•	 The machine can only be in one state at a time

•	 It can change from one state to another in response to an event or condition; this is called a
transition. Often this is a switch or a binary sensor.

•	 The Finite State Machine (FSM) is defined by a list of its states and the condition for each transition

There can be outputs linked to the FSM’s state, but in this chapter we will be considering only FSMs with
no output.

Example 1
Draw an FSM to model the states and transitions of a door. The door can be open, closed or locked.
It can change from the state of being open to closed, from closed to locked, but not, say, from locked
to open. (It has to be unlocked first.)

State

Transition

Opened Closed Locked

Open door Unlock door

Close door Lock door

Transition condition

2-12

61

CHAPTER 12 – FINITE STATE MACHINES

Example 2
Draw an FSM to represent a light switch. When the button is pressed, the light goes on. When the button
is pressed again, the light goes off.

There is just one input B to this system: Button pressed (B=1) or Button not pressed (B=0).

B=1

B=0 B=0

Light
off

Light
on

B=1

Notice that in each state, both the transitions B=0 and B=1 are drawn. If the light is off, the transition
B=0 has no effect so the transition results in the same state. Likewise, if the light is on, as long as the
button is not pressed, the light will stay on.

Usage of finite state machines
FSMs are widely used in modelling the design of hardware digital systems, compilers and network
protocols. They are also used in the definition of languages, and to decide whether a particular word
is allowed in the language.

A finite state machine which has no output is also known as a finite state automaton. It has a start
state and a set of accept states which define whether it accepts or rejects finite strings or symbols.
The finite state automaton accepts a string c1, c2…cn if there is a path for the given input from the start
state to an accept state. The language recognised by the finite state automaton consists of all the strings
accepted by it.

If, when you are in a particular state, the next state is uniquely determined by the input, it is a
deterministic final state automaton. All the examples which follow satisfy this condition.

Notation

State

MeaningSymbol

Start state

Accept state

Transition

2-12

SECTION 2 – PROBLEM SOLVING AND THEORY OF COMPUTATION

62

Example 3
Use an FSM to represent a valid identifier in a programming language. The rules for a valid identifier for
this particular language are:

•	 The identifier must start with a lowercase letter

•	 Any combination of letters and lowercase numbers may follow

•	 There is no limit on the length of the identifier

S3

0-9

a-z

a-z, 0-9

a-z, 0-9

S1 S2

In this diagram, the start state S1 is represented by a circle with an arrow leading into it.

The accept state S2 is denoted by a double circle.

S3 is a “dead state” because having arrived here, the string can never reach the accept state.

Each character of the input string is input sequentially to the FSM and if the last character reaches
the final state S2 (the accept state), the string is valid and is accepted. If it ends up anywhere else
the string is invalid.

Note that there can only be one starting state but there may be more than one accept state (or no
accept states).

Q1: 	Which of the following strings is valid and accepted by this finite state machine?
	 (i) a     (ii) bba     (iii) abbaa     (iv) bbbb

a

a

b

b

b

aS0 S1

S2

2-12

SECTION 3 – DATA REPRESENTATION

96

What is encryption?
Encryption is the transformation of data from one form to another to prevent an unauthorised third party
from being able to understand it. The original data or message is known as plaintext. The encrypted
data is known as ciphertext. The encryption method or algorithm is known as the cipher, and the
secret information to lock or unlock the message is known as a key.

The Caesar cipher and the Vernam cipher offer polar opposite examples of security. Where the Vernam
offers perfect security, the Caesar cipher is very easy to break with little or no computational power.
There are many others methods of encryption – some of which may take many computers, many years
to break, but these are still breakable and the principles behind them are similar.

The Caesar cipher
Julius Caesar is said to have used this method to keep messages secure. The Caesar cipher (also
known as a shift cipher) is a type of substitution cipher and works by shifting the letters of the
alphabet along by a given number of characters; this parameter being the key. Below is an example of
a shift cipher using a key of 5. (An algorithm for this cipher is given as an example on page 46.)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

â â

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

Q2:	 Using the table above, what is the ciphertext for ‘JULIUS CAESAR’ using a shift of 5?

Q3:	 What word can be translated from the following ciphertext, which uses a key of -2: ZYBECP

You will no doubt be able to see the ease with which you might be able to decrypt a message using
this system.

DGYDQFH WR ERUGHU DQG DWWDFN DW GDZQ
Even if you had to attempt a brute force attack on the message above, there are only 25 different
possibilities (since a shift of zero means the plaintext and the ciphertext are identical). Otherwise you
might begin by guessing the likelihood of certain characters first and go from there. Using cryptanalysis
on longer messages, you would quickly find the most common ciphertext letter and could start by
assuming this was an E, for example, or perhaps an A. (Hint.)

Cryptanalysis and perfect security
Other ciphers that use non-random keys are open to a cryptanalytic attack and can be solved given
enough time and resources. Even ciphers that use a computer-generated random key can be broken
since mathematically generated random numbers are not actually random; they just appear to be so. A
truly random sequence must be collected from a physical and unpredictable phenomenon such as white
noise, the timing of a hard disk read/write head or radioactive decay. A truly random key must be used
with a Vernam cipher to ensure it is mathematically impossible to break.

The Vernam cipher
The Vernam cipher, invented in 1917 by the scientist Gilbert Vernam, is one implementation of a class
of ciphers known as one-time pad ciphers, all of which offer perfect security if used properly. All others
are based on computational security and are theoretically discoverable given enough time, ciphertext
and computational power. Frequency analysis is a common technique used to break a cipher.

3-18

97

CHAPTER 18 – DATA COMPRESSION AND ENCRYPTION ALGORITHMS

One-time pad
To provide perfect security, the encryption key or one-time pad must be equal to or longer in characters
than the plaintext, be truly random and be used only once. The sender and recipient must meet in person
to securely share the key and destroy it after encryption or decryption. Since the key is random, so will
be the distribution of the characters meaning that no amount of cryptanalysis will produce meaningful
results.

The bitwise exclusive or XOR
A Boolean XOR operation is carried out between the binary representation of each character of the
plaintext and the corresponding character of the one-time pad. The XOR operation is covered in Chapter
23 and you may want to refer to this to verify the output for any combination of 0 and 1. Use the ASCII
chart on page 73 for reference.

Plaintext: M Key: + XOR: f

1 0 1

0 1 1

0 0 0

1 1 0

1 0 1

0 1 1

1 1 0

Q4:	� Using the ASCII chart and the XOR operator, what ciphertext character will be produced from
the letter E with the key w?

Using this method, the message “Meet on the bridge at 0300 hours” encrypted using a one-time pad
of +tkiGeMxGvnhoQ0xQDIIIVdT4sIJm9qf will produce the ciphertext:

The encryption process will often produce strange symbols or unprintable ASCII characters as in the
above example, but in practice it is not necessary to translate the encrypted code back into character
form, as it is transmitted in binary. To decrypt the message, the XOR operation is carried out on the
ciphertext using the same one-time pad, which restores it to plaintext.

Exercises
1.	 Explain the difference between lossy and lossless data compression.� [2]

2.	� Run-length encoding (RLE) is a pattern substitution compression algorithm.
Data is stored in the format (colour,run) where 0 = White, 1 = Black.

		 (0,1),(1,5),(0,1),

		 (1,7),

		 (1,1),(0,2),(1,1),(0,2),(1,1),

		 (1,7),

		 (0,1),(1,1),(0,1),(1,1),(0,1),(1,1),(0,1),

		 (0,1),(1,1),(0,1),(1,1),(0,1),(1,1),(0,1),

		 (0,1),(1,1),(0,3),(1,1),(0,1)

3-18

SECTION 5 – COMPUTER ORGANISATION AND ARCHITECTURE

140

5-27

Assembly language instructions
Machine code was the first “language” used to enter programs by early computer programmers. The next
advance in programming was to use mnemonics instead of binary codes, and this was called assembly
code or assembly language. Each assembly language instruction translates into one machine code
instruction.

Different mnemonic codes are used by different manufacturers, so there are several versions of assembly
language.

Typical statements in machine code and assembly language are:

Machine code Assembly code Meaning

0100 1100 LDA #12 Load the number 12 into the accumulator

0010 0010 ADD #2 Add the number 2 to the contents of the accumulator

0111 1111 STO 15 Store the result from the accumulator in location 15

The # symbol in this assembly language program signifies that the immediate addressing mode is being
used.

Q5:	� Write a statement in a high level language which performs an operation equivalent to the
three statements in the above machine code program, with the result being stored in a
location called TOTAL.

Q6:	� Write a machine code program, and an equivalent assembly language program, to add the
contents of locations 10 and 11 and store the result in location 14.

Exercises
1.	� A computer with a 16-bit word length uses an instruction set with 6 bits for the opcode, including

the addressing mode.

	 (a)	 What is an instruction set?� [1]

	 (b)	 How many instructions could be included in the instruction set of this computer?� [1]

	 (c)	 What is the largest number that can be used as data in the instruction?� [1]

	 (d)	 What would be the effect of increasing the space allowed for the opcode by 2 bits?� [2]

	 (e)	 What would be the benefits of increasing the word size of the computer?� [2]

2.	 The high-level language statement

			 X = Y + 6

	 is to be written in assembly language.

	� Complete the following assembly language statements, which are to be the equivalent of the above
high level language statement. The LOAD and STORE instructions imply the use of the accumulator
register.

		 LOAD ……………………………
		 ……………………………………#6
		 STORE …………………………� [3]

SECTION 6 – COMMUNICATION: TECHNOLOGY AND CONSEQUENCES

162

6-31

Parity
Computers use either even or odd parity. In an even parity machine, the total number of ‘on’ bits in every
byte (including the parity bit) must be an even number. When data is transmitted, the parity bit is set at
the transmitting end and parity is checked at the receiving end, and if the wrong number of bits are ‘on’,
an error has occurred. In the diagram below the parity bit is the most significant bit (MSB).

Parity bit in even parity system

Q2: 	�The ASCII codes for P and Q are 1010000 and 1010001 respectively. In an even parity
transmission system, what will be the value of the parity bit for the characters P and Q?

Synchronous transmission
Using synchronous transmission, data is transferred at regular intervals that are timed by a clocking
signal, allowing for a constant and reliable transmission for time-sensitive data, such as real-time video
or voice. Parallel communication typically uses synchronous transmission – for example, in the CPU, the
clock emits a signal at regular intervals and transmissions along the address bus, data bus and control
bus start on a clock signal, which is shared by both sender and receiver.

Asynchronous transmission
Using asynchronous transmission, one byte at a time is sent, with each character being preceded by
a start bit and followed by a stop bit.

The start bit alerts the receiving device and synchronises the clock inside the receiver ready to receive the
character. The baud rate at the receiving end has to be set up to be the same as the sender’s baud rate
or the signal will not be received correctly. The stop bit is actually a “stop period”, which may be arbitrarily
long. This allows the receiver time to identify the next start bit and gives the receiver time to process the
data before the next value is transmitted.

A parity bit is also usually included as a check against incorrect transmission. Thus for each character
being sent, a total of 10 bits is transmitted, including the parity bit, a start bit and a stop bit. The start
bit may be a 0 or a 1, the stop bit is then a 1 or a 0 (always different). A series of electrical pulses is sent
down the line as illustrated below:

Low

High

Start
bit

Parity
bit

Stop
bit

1
Bit 0

1
Bit 2

1
Bit 5

1
Bit 7

0
Bit 9

0
Bit 8

0
Bit 6

0
Bit 4

0
Bit 3

0
Bit 1

Character code for ‘R’

Vo
lta

ge
 (V

)

Asynchronous transmission

Parity

01000001

Least Significant Bit (LSB)

162

INDEX – AQA AS LEVEL COMPUTER SCIENCE

186

A
abstraction, 52, 108

data, 57
functional, 56
problem, 57
procedural, 55

accumulator, 132, 138
active tags, 152
ADC, 90
address bus, 127, 128, 135
addressing mode

direct, 139
immediate, 139

algorithm, 2
interpreting, 45
sorting, 44

ALU, 132
Amazon, 179
analogue

data, 89
to digital conversion, 90

analysis, 34
AND, 10, 144
AND gate, 115
Application Programming Interface,

103
application software, 102
arithmetic logic unit, 127, 132
arithmetic operations, 3, 127, 143
arrays, 17, 19
ASCII, 73
assembler, 110
assembly language, 108, 109, 140,

142
asynchronous transmission, 162
audio bit depth, 88
automation, 58
automaton, 61

B
backing store management, 104
bandwidth, 161
barcode reader, 149
barcodes

2-D, 148
linear, 148

baud rate, 161

binary
addition, 77
converting to and from decimal, 69
file, 31
fixed point, 80
floating point, 81
multiplication, 78
negative numbers, 79
number system, 69
search, 43
subtraction, 80

bit, 72
depth, 88
rate, 161

bitmap image, 83
block-structured languages, 39
Blu-Ray, 155
Boolean algebra, 120

Absorption rule, 120
Associative rule, 120
Commutative rule, 120
Distributive rule, 120

Boolean operators, 10
bridges of Königsberg, 54
bubble sort, 44
bus, 127

address, 128
control, 128
data, 128

byte, 72
bytecode, 112

C
cache memory, 135
Caesar cipher, 96
camera-based readers, 150
carry, 78
CASE, 10
CCD, 151
CD ROM, 155
Central Processing Unit, 126
check digit, 75
checksum, 75
ciphertext, 96
CIR, 133
client-server network, 168
clock speed, 135
CMOS, 151

Colossus computer, 106
colour depth, 83
comments, 3
compare and branch

instructions, 143
compiler, 110, 112
composition, 57
compression

dictionary-based, 95
lossless, 93
lossy, 93

computational thinking, 35, 52
Computer Misuse Act, 183
constants, 6
control bus, 127, 128
control unit, 127, 132
Copyright, Designs and Patents Act

(1988), 183
CPU, 126
cryptanalysis, 96, 97
CSMA/CA, 173
CSMA/CD, 166
current instruction register, 133
cyber-attack, 177
cyber-bullying, 181

D
DAC, 90
data

analogue, 89
boundary, 48
bus, 127, 128, 135
communication, 159
digital, 89
erroneous, 48
structures, 17
transfer operations, 143
types, 3

Data Protection Act (1998), 183
De Morgan’s laws, 118
decomposition, 57
denary, 80
destruction of jobs, 180
dictionary based compression, 95
digital

camera, 151
data, 89
to analogue conversion, 90

Index

Index

INDEX – AQA AS LEVEL COMPUTER SCIENCE

187

disk defragmenter, 101
DPI, 83
driverless cars, 182
dry run, 49
dual-core processor, 134

E
EAN, 75
eBay, 179
economic impact of the Internet, 179
elementary data types, 17
embedded systems, 130
encryption, 96
Enigma code, 106
error checking, 74
ethics, 182
evaluating a program, 46
evaluation, 50
event messages, 91
exbi, 72

F
fetch-execute cycle, 134
field, 29
file, 29

binary, 31
text, 29

file server, 168
finite state

automaton, 61
machine, 60

first generation language, 53
FOR … ENDFOR, 15
frequency of a sound, 90
functions, 5, 21

string-handling, 5

G
gate

NOT, AND, OR, 114
XOR, NAND, NOR, 116

general purpose registers, 132
gibi, 72
Google, 179
	 Street View, 178
graph theory, 55

H
hard disk, 154
hardware, 100
Harvard architecture, 130
hexadecimal, 70

converting to and from decimal, 70
hierarchy chart, 40
high-level languages, 109

I
I/O controller, 127, 129
IF … THEN, 8
image resolution, 83
imperative language, 109
information hiding, 54, 57
Instagram, 181
instruction set, 107, 110
interfaces, 23, 129
internet security 172
internet of things, 182
interpreter, 111, 112
interrupt, 136

handling, 105
Interrupt Service Routine, 136
irrational number, 68
ISBN, 75
iteration, 13

J-K
Java Virtual Machine, 112
kibi, 72
kilobyte, 72

L
LAN, 164
laser

printer, 152
scanner, 150

latency, 161
library programs, 101
loader, 103
local area network, 164
logic gates, 114
logical bitwise operators, 144
logical operations, 127
low-level language, 108

M
MAC address, 167
machine code, 106

instruction format, 138
majority voting, 75
MAR, 133
MBR, 133
mebi, 72
memory

address register, 133
buffer register, 133
data register, 133
management, 104

metadata, 84
MIDI, 91

metadata, 91
mnemonics, 142
modular programming, 25
module, 39
modulo 10 system, 76

N
NAND gate, 116
natural number, 68
nested loops, 15
network

client-server, 168
peer-to-peer, 169

	 security, 172
station, 171

nibble, 72
NOR gate, 116
NOT, 10, 11, 144

gate, 114
number

irrational, 68
natural, 68
ordinal, 68
rational, 68
real, 68

number system
binary, 69
hexadecimal, 70

Nyquist’s theorem, 90

O
object code, 110
one-time pad, 97

Index

INDEX – AQA AS LEVEL COMPUTER SCIENCE

188

opcode, 106, 138
operand, 106, 138
operating system, 100, 103
operation code, 106, 138
optical disk, 155
OR, 10, 144
OR gate, 115
ordinal number, 68
overflow, 78
Oyster card, 152

P
parallel data transmission, 160
parity, 162

bit, 74
passive tags, 152
PC, 133
pebi, 72
peer-to-peer network, 169
pen-type reader, 149
peripheral management, 105
piracy, 170
pixel, 83
plaintext, 96
platform independence, 112
problem solving strategies, 36
procedure interface, 56
procedures, 21
processor, 127

instruction set, 138
performance, 134
scheduling, 104

program counter, 133
protocol, 163
pseudocode, 2

Q-R
quad-core processor, 134
Quick Response (QR) code, 148
Radio Frequency Identification, 151
raster image, 83
rational number, 68
record, 29
register, 127
relational operators, 8
REPEAT … UNTIL, 14
resolution, 83
resource management, 100
RFID, 151

RLE, 94
router, 171
RTS/CTS, 173
Run Length Encoding, 94

S
sample resolution, 88
secondary storage, 154
selection statement, 8
serial data transmission, 159
server

database, 168
file, 168
mail, 168
print, 168
web, 168

Service Set Identification, 172
Snowden, Edward, 176
software, 34, 100, 102

application, 102
bespoke, 102
off-the-shelf, 102
system, 100
utility, 101

solid-state disk, 156
sorting algorithms, 44
sound sample size, 89
source code, 110
SSD, 156
SSID, 172
stored program concept, 129
string conversion, 5
structured programming, 39
subroutines, 21

advantages of using, 25
user-written, 22
with interfaces, 23

substitution cipher, 96
synchronous transmission, 162
syntax error, 111
system

bus, 127
clock, 132

T
tebi, 72
test plan, 48
text file, 29
topology

logical, 166
physical, 166
physical bus, 164
physical star, 165

trace table, 14, 49, 107
translators

programming language, 101
transmission rate, 161
trolls, 181
truth tables, 114
two’s complement, 80

U
Unicode, 74
user-defined data type, 29
user generated content, 181
user interface, 100
utility software, 101

V
variables, 6, 24
vector graphics, 85
Vernam cipher, 96
virtual memory, 104
virus checker, 101
von Neumann, 100

machine, 129

W
WAP, 171
WHILE … ENDWHILE, 13
whitelist, 172
Wi-Fi, 171

Protected Access, 172
Wilkes, Maurice, 100
WinZip, 101
wireless network

access point, 171
interface controller, 171

word, 128
word length, 135
WPA, 172

X-Z
XOR, 11, 144

gate, 116
yobi, 72
zebi, 72

Index

